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Abstract

This work is concerned with the finite-time output regulation problem for homo-
geneous quasilinear hyperbolic systems with one-side controls and with nonlinear
boundary condition at the other side. The to-be-controlled outputs are the
boundary outputs of the uncontrolled components on the same side as the con-
trols. The reference signal is assumed to be priori known and its derivative is
assumed to have compact support. We employ a time-dependent feedback reg-
ulator as the control to achieve the output regulation for nonlinear systems.
For sufficiently small initial data and reference signal, the output regulation
problem is solved under the same condition for the exact controllability of hyper-
bolic systems by one-side boundary controls. The resulting feedback control
formally depends on future system state and introduces non-local boundary con-
ditions to the closed-loop system. This brings new difficulties in proving the local
well-posedness of quasilinear systems.
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1 Introduction and problem statement

The control of hyperbolic systems is of fundamental importance in both mathematical
theory and engineering applications. These systems arise in diverse fields such as
traffic flow modeling and gas flow pipelines. For extensive examples of hyperbolic
systems in diverse applications, we refer to [1] and the references therein. In this paper,
we consider the finite-time output regulation problem for the following homogeneous
quasilinear hyperbolic system

∂tw(t, x) + Λ(x,w(t, x))∂xw(t, x) = 0, t ≥ 0, 0 ≤ x ≤ 1, (1)

where w = (w1, · · · , wn)> : [0,∞)× [0, 1]→ Rn, and Λ : [0, 1]× Rn → Rn×n is a real
matrix-valued function. Let us make the following assumptions for Λ.

Assumption 1 The matrix Λ is diagonal and has m ≥ 1 distinct negative eigenvalues and
p = n−m ≥ 1 distinct positive eigenvalues, namely for every (x, y) in [0, 1]× Rn,

Λ(x, y) = diag(λ1(x, y), · · · , λm(x, y), λm+1(x, y), · · · , λn(x, y)),

where
λ1(x,w) < · · · < λm(x,w) < 0 < λm+1(x,w) < · · · < λn(x,w).

Function λi is in C2([0, 1]× Rn) for 1 ≤ i ≤ n.

All along this paper, for a vector (or vector-valued function) ν in Rn and a matrix
(or matrix-valued function) B in Rn×n, we use the notation

ν =

(
ν−
ν+

)
, B =

(
B−− B−+
B+− B++

)
,

with ν− in Rm, ν+ in Rp and B−− in Rm×m, B−+ in Rm×p, B+− in Rp×m, B++ in
Rp×p. The following types of boundary conditions and controls are considered. The
boundary condition at x = 0 is given by

w+(t, 0) = Q(w−(t, 0)), t ≥ 0, (2)

with function Q : Rm → Rp satisfying the following assumptions.

Assumption 2 Function Q is in C2(Rm)p with Q(0) = 0.

The boundary control at x = 1 is

w−(t, 1) = u(t) = (u1, · · · , um)>(t), t ≥ 0. (3)

Dedicated to Jean-Michel Coron, on the occasion of his 70th birthday.
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The initial condition is given by

w(0, x) = w0(x), 0 ≤ x ≤ 1, (4)

where w0 = (w0
1, · · · , w0

n)> : [0, 1]→ Rn satisfies the following assumptions.

Assumption 3 Initial data w0 is in C1([0, 1])n and satisfies the compatibility conditions

w0
+(0) = Q(w0

−(0)), Λ++(0, w0(0))∂xw
0
+(0) = ∇Q(w0

−(0))Λ−−(0, w0(0))∂xw
0
−(0). (5)

Assumptions 1 to 3 are consistent with those in [2]. They are usual assumptions
for considering the local C1 solutions of quasilinear hyperbolic systems.

In this work, we concern the finite-time output regulation problem, namely design-
ing a feedback regulator such that the output of the system tracks the given reference
signal in finite time. The following to-be-controlled output and reference signal are
considered. The to-be-controlled output is given by

y(t) = w+(t, 1). (6)

The reference signal r = (r1, · · · , rp)> : [0,∞) → Rp is assumed to be priori known
and satisfies the following assumptions.

Assumption 4 The reference signal r is in C1([0,∞))p. The derivative r′ has compact
support in [0,∞).

Assumption 4 will be commented in the item 3 of Remark 1. Denote by

ey(t) = y(t)− r(t) (7)

the output tracking error. Let us give the notion of the regulation that we are interested
in.

Definition 1 Let T > 0. The output y of system (1)-(4) and (6) achieves the finite-time
output regulation within settling time T , if there exist ε > 0 and a feedback regulator u
such that for all initial states w0 in C1([0, 1])n satisfying (5) and ‖w0‖C1([0,1])n < ε, and all

reference signals r in C1([0,∞))p satisfying Assumption 4 and ‖r‖C1([0,∞))p < ε, the output
tracking error ey satisfies ey(t) = 0 for t ≥ T .

Over the past few decades, research on control problems for quasilinear hyper-
bolic systems has become substantially enriched, particularly regarding stabilization
problems. To the best of our knowledge, the pioneer works are the studies in [3, 4]
on homogeneous 2 × 2 quasilinear hyperbolic systems. A generalization to homoge-
neous n × n systems was given by [5–7]. Particularly, [8] establishes the theory on
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semi-global classical solutions to general nonautonomous quasilinear hyperbolic sys-
tems and applies it to controllability problems. All these results rely on a systematic
use of direct estimates of the solutions and their derivatives along the characteristic
curves. Moreover, all these results provide decay estimates in the C1-norm. For decay
estimates in the H2-norm for quasilinear hyperbolic systems, [9] addressed the case
of homogeneous 2× 2 systems, and subsequently, [10] dealt with homogeneous n× n
systems. The methods used in [9, 10] are both based on the direct Lyapunov method.
The key point is that the energy-like Lyapunov functions for the H2-norm are easier to
handle. Nevertheless, [11] used an energy-like Lyapunov function for the C1-norm to
give an alternative proof to a result that had already been shown with a characteristic
approach (see [5–7]). For the boundary stability of inhomogeneous hyperbolic systems,
one can refer to [1, 12, 13]. Another interesting topic is the finite-time stabilization
problem for hyperbolic systems. One can refer to [14] for the finite-time stabilization
of 2 × 2 quasilinear hyperbolic systems. The finite-time stabilization in optimal time
of quasilinear system was investigated in [2]. Later on, [15] presented Lyapunov func-
tions for the feedbacks in [2] and used estimates for Lyapunov functions to rediscover
the finite stabilization results.

This paper concerns the finite-time output regulation problem. To the best of our
knowledge, existing literature has only addressed output regulation for linear hyper-
bolic systems and linear hyperbolic systems coupled with nonlinear ODEs, while the
corresponding problem for quasilinear hyperbolic systems remains unexplored. For
the output regulation problems, unlike the stabilization problems, the objective is to
design feedback regulator such that the output of the system tracks a given reference
and rejects the disturbances. The first result on the finite-time output regulation for
hyperbolic systems was obtained in [16], where the backstepping method was used
to design the feedback regulator for boundary controlled linear 2 × 2 time-invariant
hyperbolic systems. Later on, [17, 18] achieved finite-time output regulation for gen-
eral n×n time-invariant hyperbolic systems with different convergent time. Moreover,
[19] solved finite-time output regulation for time-varying linear hyperbolic systems.
Concerning the output regulation problem for nonlinear systems, [20] considered the
output regulation problem for boundary-controlled linear hyperbolic PDEs that are
bidirectionally coupled with nonlinear ODEs.

In this paper, we consider the finite-time output regulation problem for homoge-
neous quasilinear hyperbolic systems as defined in Definition 1. Set

τi =

∫ 1

0

1

|λi(x, 0)|
dx, 1 ≤ i ≤ n. (8)

The main result of this paper is the following theorem.

Theorem 5 Let Λ, Q, w0 and r satisfy Assumptions 1 to 4. Assume that

rank(∇Q(0)) = p. (9)

Let
T0 = τm + τm+1. (10)

4



For any T > T0, set τ0 = T − T0. There exist ε = ε(τ0) > 0 and a feedback regulator

u(t) = H(t, w(t+ ·, ·), r, w0), t ≥ 0, (11)

such that if ‖w0‖C1([0,1])n < ε and ‖r‖C1([0,∞))p < ε, then there exists a unique solution w

in C1([0,∞)× [0, 1])n to system (1)-(4) with feedback regulator (11). The following estimate
holds for some positive constant C independent of w0, r, τ0 and ε,

‖w‖C1([0,∞)×[0,1])n ≤ C(1 + τ−10 )(‖w0‖C1([0,1])n + ‖r‖C1([0,∞))p). (12)

Moreover, The output y of system (1)-(4) and (6) achieves the finite-time output regulation
within settling time T .

Remark 1 1. In Theorem 5 and what follows, w(t + ·, ·) denotes the function (s, x) 7→
w(t+ s, x). The non-local boundary control involving w(t+ ·, ·) is also considered in [2].

2. It follows from assumption (9) that m ≥ p, which means that the number of controls
is greater than or equal to the number of outputs. This full-row-rank condition is a
classical requirement for the exact controllability of hyperbolic systems. Specifically, it
serves as a necessary condition for the exact boundary controllability of both linear [21]
and quasilinear [22, 23] hyperbolic systems by one-sided boundary controls.

3. Assumption 4 is due to the machinery of proof of the well-posedness of system (1)-(4).
See Section 3.2 for details. Roughly speaking, Assumption 4 implies that r′(t) = 0 for
sufficiently large t, which allows us to apply the Ascoli theorem in the well-posedness
proof.

4. From the solution estimates (12), it can be observed that as the settling time T tends to
T0 (i.e., τ0 → 0), the a priori estimate constant C(1+τ−10 ) tends to infinity. However, as
shown in the proof of well-posedness (specifically in the Step 1 of the proof of Lemma 6),
the C1-norm estimate of the solution does not depend on τ0. This leads to the admissible
initial data and reference signals tending to zero as τ0 → 0, namely

ε = ε(τ0)→ 0, as τ0 → 0.

Compared with existing results on finite-time output regulation for hyperbolic
systems, particularly [16–18] on linear time-independent systems and [19] on linear
time-varying systems, this paper investigates the output regulation problem for quasi-
linear hyperbolic systems. It is worth noting that, in contrast to [19], we have ey(t) = 0
for all t ≥ T instead of ey(t) = 0 for t in [T, T+] with some T+ > T as in [19]. The
reason lies in our simpler system configurations. Unlike the general to-be-controlled
output presented in [19], which encompasses distributed, boundary, and pointwise
internal outputs, this work considers a specific case where the to-be-controlled out-
put involves only boundary outputs. Furthermore, our model assumes the absence of
source terms and external disturbances. These system configurations guarantee that,
even when nonlinearities are taken into account, we are still able to obtain ey(t) = 0
for all t ≥ T .

The nonlinear nature of the system introduces new challenges to this problem. To
achieve output regulation on nonlinear systems, we employ time-dependent feedback
regulator. Following classical output regulation methodology, we obtain the required
feedback regulator by solving time-varying regulator equations. This feedback regula-
tor formally requires knowledge of the value of the reference signal at a future time
instant.
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The determination of this future time instant differs fundamentally between quasi-
linear and linear cases. For output regulation of linear hyperbolic systems, whether
autonomous or non-autonomous, since the regulator equations depend solely on sys-
tem parameters, this time instant is known a priori. However, in the quasilinear case,
as the propagation speeds depend on the system state, the required time instant con-
sequently becomes state-dependent. Formally speaking, this makes the time instant
dependent on the future system state, which in turn means the resulting feedback reg-
ulator formally depends on future system state. In reality, after successfully proving
the well-posedness of the closed-loop system, we demonstrate that the feedback reg-
ulator actually depends only on the current system state. Additionally, this feedback
regulator introduces non-local boundary conditions to the closed-loop system, creating
further difficulties in proving its well-posedness.

For establishing the well-posedness of the closed-loop system, we adapt the classical
iterative methods from [2, 22]. Notably, when applying the Ascoli theorem to prove
that the iteration sequence converges to a C1 limit, we require the iterative functions to
be defined on finite time intervals. Here we employ the assumption that the reference
signal has compact support.

The remaining part of this paper is organized as follows. In Section 2, we introduce
some preliminaries needed in the paper. We prove the main result, namely Theorem 5,
in Section 3. Section 4 presents the conclusions and some perspectives. Appendix A
provides the precise dynamics of two functions, which are employed in the design of
feedback regulator.

2 Preliminaries

In this section, we provide some known facts on the characteristics associated to quasi-
linear hyperbolic systems and some properties for the coefficients involved in system
(1)-(4).

2.1 Preliminaries on characteristics

Let us introduce the characteristics associated to system (1) and the entry and exit
times as in [2, 19, 24]. For t ≥ 0, 0 ≤ x ≤ 1, 1 ≤ i ≤ n and φ in C1([0,∞) × [0, 1])n

satisfying ‖φ‖C1([0,∞)×[0,1])n < ∞, let χφi (·, t, x) denote the C1 maximal solution to
the problem

d

ds
χφi (s; t, x) = λi(χ

φ
i (s; t, x), φ(s, χφi (s; t, x))), χφi (t; t, x) = x.

Here and in what follows, for 1 ≤ i ≤ n, χφi (·, t, x) is defined on a certain subinter-

val [sin,φi (t, x), sout,φi (t, x)] of [0,∞). Let us give the definition of the entry and exit

times sin,φi (t, x) and sout,φi (t, x) associated to the characteristics χφi (·, t, x). For (t, x)
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in [0,∞)× [0, 1], define the exit time sout,φi (t, x) by the solution to

χφi (sout,φi (t, x); t, x) = 0, 1 ≤ i ≤ m,

χφi (sout,φi (t, x); t, x) = 1, m+ 1 ≤ i ≤ n.
(13)

Introduce the sets for 1 ≤ i ≤ m,

Iφi = {(t, x) ∈ [0,∞)× [0, 1] : t ≥ sout,φi (0, 1)

or 0 ≤ t < sout,φi (0, 1), χφi (t; 0, 1) < x ≤ 1},

J φi = {(t, x) ∈ [0,∞)× [0, 1] : 0 ≤ t < sout,φi (0, 1), 0 ≤ x ≤ χφi (t; 0, 1)},

(14)

and for m+ 1 ≤ i ≤ n,

Iφi = {(t, x) ∈ [0,∞)× [0, 1] : t ≥ sout,φi (0, 0)

or 0 ≤ t < sout,φi (0, 0), 0 ≤ x < χφi (t; 0, 0)},

J φi = {(t, x) ∈ [0,∞)× [0, 1] : 0 ≤ t < sout,φi (0, 0), χφi (t; 0, 0) ≤ x ≤ 1}.

(15)

Define the entry time sin,φi (t, x) by

sin,φi (t, x) =


solution to χφi (sin,φi (t, x); t, x) = 1, 1 ≤ i ≤ m, (t, x) ∈ Iφi ,

solution to χφi (sin,φi (t, x); t, x) = 0, m+ 1 ≤ i ≤ n, (t, x) ∈ Iφi ,

0, 1 ≤ i ≤ n, (t, x) ∈ J φi .

The existence of the entry and exit times sin,φi (t, x) and sout,φi (t, x) follows from
Assumption 1 and ‖φ‖C1([0,∞)×[0,1])n <∞.

For 1 ≤ i ≤ n, let

Dom(χφi ) = {(s, t, x) ∈ [0,∞)× [0,∞)× [0, 1] : s ∈ [sin,φi (t, x), sout,φi (t, x)]}.

For 1 ≤ i ≤ n and for (s, t, x) in Dom(χφi ), we have

∂xχ
φ
i (s; t, x) = exp

{∫ s

t

[∂xλi(χ
φ
i (τ ; t, x), φ(τ, χφi (τ ; t, x)))

+∇yλi(χφi (τ ; t, x), φ(τ, χφi (τ ; t, x)))∂xφ(τ, χφi (τ ; t, x))]dτ
}
,

∂tχ
φ
i (s; t, x) = − λi(x, φ(t, x))∂xχ

φ
i (s; t, x).

(16)
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Differentiating (13), we obtain that for (t, x) in [0,∞)× [0, 1],

∂νs
out,φ
i (t, x) =


− ∂νχ

φ
i (sout,φi (t, x); t, x)

λi(0, φ(sout,φi (t, x), 0))
, 1 ≤ i ≤ m,

− ∂νχ
φ
i (sout,φi (t, x); t, x)

λi(1, φ(sout,φi (t, x), 1))
, m+ 1 ≤ i ≤ n,

(17)

with ∂ν is ∂t or ∂x.

2.2 Properties for coefficients

Let us provide some properties of the coefficients in system (1)-(4). Denote by ‖ ·‖ the
infinity norm for vector and matrix. For some constant δ > 0, denote B(δ)n = {y ∈
Rn : ‖y‖ ≤ δ}. It follows from Assumption 2 and (9), and Inverse Function Theorem
that there exist a neighborhood U ⊂ Rm of the origin, a neighborhood V ⊂ Rp of the
origin and right inverse function Q† : V → U such that

Q† ∈ C2(V)m, Q†(0) = 0, Q(Q†(a)) = a, ∀a ∈ V. (18)

Note that Q† is not necessarily unique. Take δ > δ0 > 0 such that B(δ0)p ⊂ V and
U ⊂ B(δ)m.

Let δ > δ0 > 0, and let φ and ϕ in C1([0,∞)×[0, 1])n satisfy ‖φ‖C1([0,∞)×[0,1])n ≤ δ
and ‖ϕ‖C1([0,∞)×[0,1])n ≤ δ. It follows from Assumptions 1 and 2 and (16) and (17)
that there exist positive constants Cδ0 , Cδ and cδ such that

1. for t ≥ 0, 0 ≤ x ≤ 1 and 1 ≤ i ≤ n, we have

cδ ≤ |λi(x, φ(t, x))| ≤ Cδ, |∂xλi(x, φ(t, x))| ≤ Cδ, ‖∇yλi(x, φ(t, x))‖ ≤ Cδ,
(19)

and therefore,

t− sin,φi (t, x) ≤ c−1δ , sout,φi (t, x)− t ≤ c−1δ , (20)

2. for 1 ≤ i ≤ p, 1 ≤ j ≤ m and for a in B(δ0)p and b in B(δ)m, we have

|Qi(b)| ≤ Cδ‖b‖, ‖∇Qi(b)‖ ≤ Cδ,
∥∥∥∥∂2Qi∂b2

(b)

∥∥∥∥ ≤ Cδ,
|Q†j(a)| ≤ Cδ0‖a‖, ‖∇Q†j(a)‖ ≤ Cδ0 ,

∥∥∥∥∥∂2Q
†
j

∂a2
(a)

∥∥∥∥∥ ≤ Cδ0 ,
(21)

where ∂2Qi
∂b2 and

∂2Q†j
∂a2 are the Hessian matrices of Qi and Q†j , respectively;
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3. for 1 ≤ i ≤ n and (s, t, x) in Dom(χφi ), we have

|∂xχφi (s; t, x)| ≤ exp

(
Cδ
cδ

(1 + ‖φ‖C1([0,∞)×[0,1])n)

)
,

|∂tχφi (s; t, x)| ≤ Cδ exp

(
Cδ
cδ

(1 + ‖φ‖C1([0,∞)×[0,1])n)

)
;

(22)

4. for t ≥ 0, 0 ≤ x ≤ 1 and 1 ≤ i ≤ n, we have

|∂xsout,φi (t, x)| ≤ 1

cδ
exp

(
Cδ
cδ

(1 + ‖φ‖C1([0,∞)×[0,1])n)

)
,

|∂tsout,φi (t, x)| ≤ Cδ
cδ

exp

(
Cδ
cδ

(1 + ‖φ‖C1([0,∞)×[0,1])n)

)
;

(23)

5. for 1 ≤ i ≤ n, and (s, t, x) in Dom(χφi ) ∩Dom(χϕi ), we have

|χφi (s; t, x)− χϕi (s; t, x)|

=

∣∣∣∣∫ s

t

[λi(χ
φ
i (σ; t, x), φ(σ, χφi (σ; t, x)))− λi(χϕi (σ; t, x), ϕ(σ, χϕi (σ; t, x)))]dσ

∣∣∣∣
≤ Cδ

∫ max{s,t}

min{s,t}
[‖φ− ϕ‖C0([0,∞)×[0,1])n + (1 + δ)|χφi (σ; t, x)− χϕi (σ; t, x)|]dσ,

and therefore, from (20) and Gronwall’s inequality, we have

|χφi (s; t, x)− χϕi (s; t, x)| ≤ Cδ
cδ

exp

(
Cδ(1 + δ)

cδ

)
‖φ− ϕ‖C0([0,∞)×[0,1])n ; (24)

6. for t ≥ 0, 0 ≤ x ≤ 1 and 1 ≤ i ≤ n, we have

∫ sout,φi (t,x)

t

λi(χ
φ
i (σ; t, x), φ(σ, χφi (σ; t, x)))dσ

=

∫ sout,ϕi (t,x)

t

λi(χ
ϕ
i (σ; t, x), ϕ(σ, χϕi (σ; t, x)))]dσ,

and therefore, from (24), we have

|sout,φi (t, x)− sout,ϕi (t, x)|

≤ Cδ
c2δ

(
1 +

Cδ(1 + δ)

cδ
exp

(
Cδ(1 + δ)

cδ

))
‖φ− ϕ‖C0([0,∞)×[0,1])n . (25)
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2.3 Properties for the modulus of continuity for continuous
functions

Let X and Y be domains in Rm̃ and Rñ, respectively. We introduce the modulus of
continuity for continuous function φ : X → Y,

ρ(α|φ) = sup
‖x′−x′′‖≤α,
x′, x′′∈X

‖φ(x′)− φ(x′′)‖, α ≥ 0.

We provide some elementary facts for the modulus of continuity used in this paper.

1. For continuous functions φ1, φ2 : X → R, we have

ρ(α|φ1φ2) ≤ ‖φ1‖C0(X )ρ(α|φ2) + ‖φ2‖C0(X )ρ(α|φ1). (26)

2. Let Z be domain in Rk̃. For continuous functions φ1 : X → Y and φ2 : Y → Z,
we have

ρ(α|φ2 ◦ φ1) ≤ ρ(ρ(α|φ1)|φ2). (27)

3. For positive constant C, there exists constant C ′ > 0 such that for continuous
function φ : X → Y, we have

ρ(Cα|φ) ≤ C ′ρ(α|φ). (28)

3 Proof of Theorem 5

We prove Theorem 5 in three steps. In Section 3.1, we provide the design of the
feedback regulator. In Section 3.2, we prove the well-posedness of system (1)-(4) with
the feedback regulator. Finite-time output regulation is obtained in Section 3.3. In
what follows, assume that the assumptions in Theorem 5 hold.

3.1 Design of the feedback regulator

Recalling the properties in Section 2.2, let us assume that ‖w0‖C1([0,1])n < δ and
‖r‖C1([0,∞))p < δ0. In order to achieve the finite-time output regulation, we divide the
state w into two parts: one part possesses the finite-time stable properties, and the
other part meets the output regulation objective. To this end, we split w into two new
variables. For (t, x) in [0,∞)× [0, 1], let

w(t, x) = z(t, x) + Π(t, x),

where z = (z1, · · · , zn)> : [0,∞) × [0, 1] → Rn and Π = (Π1, · · · ,Πn)> : [0,∞) ×
[0, 1]→ Rn are the new variables. We hope that the tracking error ey(t) defined in (7)
depends only on z and z-system is finite-time stable. To this end, we determine the
equations for z and Π through the following four steps.
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1. It follows from (1) that for (t, x) in [0,∞)× [0, 1],

∂tz(t, x) + Λ(x, z(t, x) + Π(t, x))∂xz(t, x)

= −∂tΠ(t, x)− Λ(x, z(t, x) + Π(t, x))∂xΠ(t, x). (29)

To ensure that the system of z is finite-time stable, we aim to eliminate any
inhomogeneous terms in (29). Therefore, we set

∂tΠ(t, x) + Λ(x, z(t, x) + Π(t, x))∂xΠ(t, x) = 0, t ≥ 0, 0 ≤ x ≤ 1. (30)

2. For the boundary condition at x = 0, from (2), we obtain

z+(t, 0) = Q(z−(t, 0) + Π−(t, 0))−Π+(t, 0), t ≥ 0.

In order to establish the implication

(z−(t, 0) = 0)⇒ (z+(t, 0) = 0), t ≥ 0,

let
Π+(t, 0) = Q(Π−(t, 0)), t ≥ 0. (31)

3. For T > T0, set τ0 = T − T0. For the boundary condition at x = 1, from (3), we
have

z−(t, 1) = w−(t, 1)−Π−(t, 1) = u(t)−Π−(t, 1), t ≥ 0.

To satisfy the compatibility condition at x = 1 and to establish

z−(t, 1) = 0, t ≥ τ0/2,

we set
u(t) = ζ(t) + (Idm − η(t))Π−(t, 1), t ≥ 0, (32)

where Idm is m×m identity matrix, and ζ = (ζ1, · · · , ζm)> in C1([0,∞))m and
η = diag(η1, · · · , ηm) in C1([0,∞))m×m satisfy

ζi(0) = w0
i (1), ζ ′i(0) = −λi(1, w0(1))∂xw

0
i (1), ηi(0) = 1, η′i(0) = 0,

ζi(t) = ηi(t) = 0 for t ≥ min{τ0/2, 1},
(33)

and

‖ζi‖C0([0,∞)) ≤ Cδ‖w0‖C1([0,1])n , ‖ηi‖C0([0,∞)) ≤ C,
‖ζ ′i‖C0([0,∞)) ≤ Cδ(1 + τ−10 )‖w0‖C1([0,1])n , ‖η′i‖C0([0,∞)) ≤ Cτ−10 ,

(34)

for 1 ≤ i ≤ m and for some constants Cδ, C > 0. We provide the precise dynamics
for ζi and ηi and the proof of (34) in Appendix A.
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4. It follows from (6) and (7) that

ey(t) = w+(t, 1)− r(t) = z+(t, 1) + Π+(t, 1)− r(t), t ≥ 0.

In order to ensure the tracking error ey(t) depend only on z, we set

Π+(t, 1) = r(t), t ≥ 0. (35)

The finite-time stability of z-system

∂tz(t, x) + Λ(x, z(t, x) + Π(t, x))∂xz(t, x) = 0, t ≥ 0, 0 ≤ x ≤ 1,

z+(t, 0) = Q(z−(t, 0) + Π−(t, 0))−Π+(t, 0), t ≥ 0,

z−(t, 1) = ζ(t)− η(t)Π−(t, 1), t ≥ 0,

z(0, x) = w0(x)−Π(0, x), 0 ≤ x ≤ 1,

(36)

is discussed in Section 3.3. By (32), we can determine a feedback regulator u(t)
from (30), (31) and (35), which we refer to as the regulator equations in the output
regulation problem.

Let Q† be the right inverse function of Q. Notice that w(t, x) = z(t, x) + Π(t, x).
Integrating (30) along the characteristics χwi (s; t, x), 1 ≤ i ≤ n, and using the bound-
ary conditions (31) and (35), we can choose Π−(t, 1) as follows, for t ≥ 0 and
1 ≤ i ≤ m,

Πi(t, 1) = Q†i (r̃
w
i (t)), (37)

where

r̃wi (t) =

r1(sout,wm+1 (sout,wi (t, 1), 0))
...

rp(s
out,w
m+p (sout,wi (t, 1), 0))

 . (38)

Remark 2 The choice of Π−(t, 1) is not unique because the right inverse function Q† is not
necessarily unique.

Consequently, by considering the feedback regulator (32) with (37) for system
(1)-(4), we obtain the system

∂tw(t, x) + Λ(x,w(t, x))∂xw(t, x) = 0, t ≥ 0, 0 ≤ x ≤ 1,

w+(t, 0) = Q(w−(t, 0)), t ≥ 0,

wi(t, 1) = ζi(t) + (1− ηi(t))Q†i (r̃
w
i (t)), t ≥ 0, 1 ≤ i ≤ m,

w(0, x) = w0(x), 0 ≤ x ≤ 1.

(39)

Remark 3 By the well-posedness result given in next subsection, the feedback regulator (32)
with (37) is well-defined by the current state w(t, ·) and the priori known reference signal r.
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3.2 Well-posedness of (39)

In this section, the well-posedness for quasi-linear hyperbolic system (39) with non-
linear, non-local boundary conditions. The proof is inspired by the methods used in
[2, 22]. The main result of this section is the following lemma.

Lemma 6 Let Λ, Q, w0 and r satisfy Assumptions 1 to 4. Let T0 be defined by (8) and
(10). Let δ > δ0 > 0 be given in Section 2.2. For any T > T0, set τ0 = T − T0. There exists
ε = ε(δ, δ0, τ0) in (0, δ0), such that if ‖w0‖C1([0,1])n < ε and ‖r‖C1([0,∞))p < ε, then there

exists a unique solution w in C1([0,∞) × [0, 1])n to system (39). Moreover, there exists a
positive constant C, independent of w0, r, τ0 and ε, such that

‖w‖C1([0,∞)×[0,1])n ≤ C(1 + τ−10 )(‖w0‖C1([0,1])n + ‖r‖C1([0,∞))p). (40)

Proof We use an iterative method to prove well-posedness of (39). We split the proof into
four steps.

1. We show that the iterative sequence remains within the same local C1 function subspace.

2. We prove that the iterative sequence converges in C0 function space.

3. We use the Ascoli theorem to demonstrate that the sequence has a convergent
subsequence in the C1 function subspace.

4. We prove the uniqueness.

Step 1. Let ‖w0‖C1([0,1])n < δ and ‖r‖C1([0,∞))p < δ0. Let τ0 = T − T0. For 1 ≤ i ≤ m,
let ζi and ηi be defined in Appendix A satisfying (33) and (34). It follows from Assumption 4
that there exist T ∗ > 1 + 2c−1δ and r∗ in Rp satisfying ‖r∗‖ ≤ ‖r‖C1([0,∞))p such that

r(t) = r∗, t ≥ T ∗. (41)

We set

D(θ) = {φ ∈ C1([0,∞)× [0, 1])n : ‖φ‖C1([0,∞)×[0,1])n < θ,

φ(0, ·) = w0, φ+(t, ·) = r∗ for t ≥ T ∗, φ−(t, ·) = Q†(r∗) for t ≥ T ∗}.
In what follows, for notational ease, we ignore the dependence of constants on δ and δ0. Fix an
appropriate w(0) such that w(0) is in D(δ) and ‖w(0)‖C1([0,∞)×[0,1])n ≤ C0(‖w0‖C1([0,1])n +

‖r‖C1([0,∞))p) for some constant C0 > 0. For l ≥ 0, let w(l+1) be the unique C1-solution to

∂tw
(l+1)(t, x) + Λ(x,w(l)(t, x))∂xw

(l+1)(t, x) = 0, t ≥ 0, 0 ≤ x ≤ 1,

w
(l+1)
+ (t, 0) = Q(w

(l+1)
− (t, 0)), t ≥ 0,

w
(l+1)
i (t, 1) = ζi(t) + (1− ηi(t))Q†i (r̃

(l)
i (t)), t ≥ 0, 1 ≤ i ≤ m,

w(l+1)(0, x) = w0(x), 0 ≤ x ≤ 1,

(42)

where and in what follows, for simplicity, we denote χ
(l)
j = χw

(l)

j , s
in,(l)
j = sin,w

(l)

j , s
out,(l)
j =

sout,w
(l)

j , I(l)j = Iw
(l)

j , J (l)
j = Jw

(l)

j and r̃
(l)
i (t) = r̃w

(l)

i (t), for 1 ≤ j ≤ n, 1 ≤ i ≤ m and

l ≥ 0. Integrating (42) along the characteristics χ
(l)
i , we obtain that for 1 ≤ i ≤ m,

w
(l+1)
i (t, x) =

w
(l+1)
i (s

in,(l)
i (t, x), 1), (t, x) ∈ I(l)i ,

w0
i (χ

(l)
i (0; t, x)), (t, x) ∈ J (l)

i ,
(43)
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and for m+ 1 ≤ j ≤ n,

w
(l+1)
j (t, x) =

Qj−m(w
(l+1)
− (s

in,(l)
j (t, x), 0)), (t, x) ∈ I(l)j ,

w0
j (χ

(l)
j (0; t, x)), (t, x) ∈ J (l)

j .
(44)

By (18), (20), (33), (41) and T ∗ > 1 + 2c−1δ , for any w(l) in D(δ), (t, x) in [T ∗,∞) × [0, 1],
1 ≤ i ≤ m and m+ 1 ≤ j ≤ n, we have that

s
in,(l)
i (s

in,(l)
j (t, x), 0) > 1,

and therefore, for 1 ≤ i ≤ m and m+ 1 ≤ j ≤ n,

w
(l+1)
i (t, x) = Q†i (r̃

(l)
i (s

in,(l)
i (t, x))) = Q†i


r1(s

out,(l)
m+1 (s

out,(l)
i (t, x), 0))
...

rp(s
out,(l)
m+p (s

out,(l)
i (t, x), 0))

 = Q†i (r
∗),

w
(l+1)
j (t, x) = Qj−m


Q†1(r̃

(l)
1 (s

in,(l)
1 (s

in,(l)
j (t, x), 0)))

...

Q†m(r̃
(l)
m (s

in,(l)
m (s

in,(l)
j (t, x), 0)))



= Qj−m ◦Q†


r1(s

out,(l)
m+1 (s

in,(l)
j (t, x), 0))

...

rp(s
out,(l)
m+p (s

in,(l)
j (t, x), 0))


= rj−m(s

out,(l)
j (s

in,(l)
j (t, x), 0)) = rj−m(s

out,(l)
j (t, x)) = r∗j−m.

Let W (l)(t, x) = ∂tw
(l)(t, x) for t ≥ 0, 0 ≤ x ≤ 1 and l ≥ 0. We have

∂tW
(l+1)(t, x) + Λ(x,w(l)(t, x))∂xW

(l+1)(t, x) = A(l)(t, x)W (l+1)(t, x), t ≥ 0, 0 ≤ x ≤ 1,

W
(l+1)
+ (t, 0) = ∇Q(w

(l+1)
− (t, 0))W

(l+1)
− (t, 0), t ≥ 0,

W
(l+1)
i (t, 1) = ζ′i(t)− η

′
i(t)Q

†
i (r̃

(l)
i (t)) + (1− ηi(t))∇Q†i (r̃

(l)
i (t))(r̃

(l)
i )′(t) t ≥ 0, 1 ≤ i ≤ m,

W (l+1)(0, x) = −Λ(x,w0(x))∂xw
0(x), 0 ≤ x ≤ 1,

(45)
where

(r̃
(l)
i )′(t) =


r′1(s

out,(l)
m+1 (s

out,(l)
i (t, 1), 0))∂ts

out,(l)
m+1 (s

out,(l)
i (t, 1), 0)

...

r′p(s
out,(l)
m+p (s

out,(l)
i (t, 1), 0))∂ts

out,(l)
m+p (s

out,(l)
i (t, 1), 0)

 ∂ts
out,(l)
i (t, 1), (46)

and

A(l)(t, x) := diag(a
(l)
1 (t, x), . . . , a

(l)
n (t, x))

= diag(∇yλ1(x,w(l)(t, x))W (l)(t, x), . . . ,∇yλn(x,w(l)(t, x))W (l)(t, x))Λ−1(x,w(l)(t, x)).
(47)

It follows from (21), (34), (38), (43) and (44) that there exists a constant C1 > 0 such that

for w(l) in D(δ), t ≥ 0 and 0 ≤ x ≤ 1,

‖w(l+1)
+ (t, x)‖ ≤ C1(‖w0‖C0([0,1])n + ‖w(l+1)

− ‖C0([0,∞)×[0,1])m),
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‖w(l+1)
− (t, x)‖ ≤ C1(‖w0‖C1([0,1])n + ‖r‖C0([0,∞))p),

Thus, there exists a constant C2 > 0 such that

‖w(l+1)‖C0([0,∞)×[0,1])n ≤ C2(‖w0‖C1([0,1])n + ‖r‖C0([0,∞))p). (48)

Integrating (45) along the characteristics χ
(l)
i and using (19)-(21), (23), (34), (38) and (46),

we obtain that there exists a constant C3 > 0 such that for w(l) in D(δ), t ≥ 0 and 0 ≤ x ≤ 1,

‖W (l+1)
+ (t, x)‖ ≤ C3(‖w0‖C1([0,1])n + ‖W (l+1)

− ‖C0([0,∞)×[0,1])m

+ ‖w(l)‖C1([0,∞)×[0,1])n‖W
(l+1)
+ ‖C0([0,∞)×[0,1])p),

‖W (l+1)
− (t, x)‖ ≤ C3[(1 + τ−10 )(‖w0‖C1([0,1])n + ‖r‖C1([0,∞))p)

+ ‖w(l)‖C1([0,∞)×[0,1])n‖W
(l+1)
− ‖C0([0,∞)×[0,1])m ].

Let ε′ in (0, δ) be sufficiently small (independent of τ0) and assume that

‖w(l)‖C1([0,∞)×[0,1])n < ε′.

Then we have for some constant C4 > 0,

‖W (l+1)‖C0([0,∞)×[0,1])n ≤ C4(1 + τ−10 )(‖w0‖C1([0,1])n + ‖r‖C1([0,∞))p). (49)

It follows from (19), (42), (48) and (49) that there exists a constant C5 > 0 such that if w(l)

is in D(ε′),

‖w(l+1)‖C1([0,∞)×[0,1])n ≤ C5(1 + τ−10 )(‖w0‖C1([0,1])n + ‖r‖C1([0,∞))p).

Thus, there exists a constant ε = ε(ε′, τ0) in (0, ε′) independent of w0 and r such that

‖w(l+1)‖C1([0,∞)×[0,1])n < ε′,

if
‖w0‖C1([0,1])n ≤ ε, ‖r‖C1([0,∞))p ≤ ε. (50)

Consequently, for ε′ in (0, δ) small enough, assume that w0 and r satisfy (50). Choose

an appropriate w(0) such that w(0) is in D(ε′) and ‖w(0)‖C1([0,∞)×[0,1])n ≤ C5(1 +

τ−10 )(‖w0‖C1([0,1])n + ‖r‖C1([0,∞))p). From (42), we get a sequence {w(l)}∞l=0 in D(ε′) such
that

‖w(l)‖C1([0,∞)×[0,1])n ≤ C5(1 + τ−10 )(‖w0‖C1([0,1])n + ‖r‖C1([0,∞))p), l ≥ 0. (51)

Step 2. Let V (l)(t, x) = w(l)(t, x)−w(l−1)(t, x) for t ≥ 0, 0 ≤ x ≤ 1 and l ≥ 1. We have

∂tV
(l+1)(t, x) + Λ(x,w(l)(t, x))∂xV

(l+1)(t, x) +B(l)(t, x) = 0, t ≥ 0, 0 ≤ x ≤ 1,

V
(l+1)
+ (t, 0) = Q(w

(l+1)
− (t, 0))−Q(w

(l)
− (t, 0)), t ≥ 0,

V
(l+1)
i (t, 1) = (1− ηi(t))

[
Q†i (r̃

(l)
i (t))−Q†i (r̃

(l−1)
i (t))

]
, t ≥ 0, 1 ≤ i ≤ m,

V (l+1)(0, x) = 0, 0 ≤ x ≤ 1,

(52)

where
B(l)(t, x) = [Λ(x,w(l)(t, x))− Λ(x,w(l−1)(t, x))]∂xw

(l)(t, x).
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Noticing that ‖w(l)‖C1([0,∞)×[0,1])n < ε′, l ≥ 0, and (50), it follows from (19), (21), (23),
(25), (34) and (38) that there exists a constant C6 > 0 such that for t ≥ 0, 0 ≤ x ≤ 1 and
1 ≤ i ≤ m,

‖B(l)(t, x)‖ ≤ C6‖w(l)‖C1([0,∞)×[0,1])n‖V
(l)(t, x)‖ ≤ C6ε

′‖V (l)(t, x)‖,

‖Q(w
(l+1)
− (t, 0))−Q(w

(l)
− (t, 0))‖ ≤ C6‖V

(l+1)
− (t, x)‖,∣∣∣(1− ηi(t)) [Q†i (r̃(l)i (t))−Q†i (r̃

(l−1)
i (t))

]∣∣∣
≤ C6‖r‖C1([0,∞))p‖V

(l)‖C0([0,∞)×[0,1])n ≤ C6ε
′‖V (l)‖C0([0,∞)×[0,1])n .

(53)

Integrating (52) along the characteristics χ
(l)
i and using the estimates (53), we obtain that

there exists a constant C7 > 0 such that for t ≥ 0 and 0 ≤ x ≤ 1,

‖V (l+1)
+ (t, x)‖ ≤ C7(‖V (l+1)

− ‖C0([0,∞)×[0,1])m + ε′‖V (l)‖C0([0,∞)×[0,1])n),

‖V (l+1)
− (t, x)‖ ≤ C7ε

′‖V (l)‖C0([0,∞)×[0,1])n .

It follows that

‖V (l+1)‖C0([0,∞)×[0,1])n ≤
1

2
‖V (l)‖C0([0,∞)×[0,1])n ,

if ε′ is small enough. This implies {w(l)}∞l=0 converges in C0([0,∞)× [0, 1])n.
Step 3. Noticing that for function φ in D(ε′),

‖φ‖C1([0,∞)×[0,1])n = ‖φ‖C1([0,T∗]×[0,1])n .

Therefore, we only need to prove {w(l)}∞l=0 process a subsequence that converges in

C1([0, T ∗] × [0, 1])n. To this end, by Ascoli theorem, we need to prove {∂tw(l)}∞l=0 and

{∂xw(l)}∞l=0 are uniformly equicontinuous on the domain [0, T ∗]× [0, 1]. Recalling the notions
of the modulus of continuity introduced in Section 2.3, it is sufficient to prove

ρ(α|∂tw(l))→ 0, as α→ 0,

ρ(α|∂xw(l))→ 0, as α→ 0,

for all l ≥ 0. Noticing that ∂xw
(l)(t, x) = −Λ(x,w(l−1)(t, x))−1∂tw

(l)(t, x), it follows from
(19) that there exists a constant C8 > 0 such that

ρ(α|∂xw(l)) ≤ C8(ρ(α|∂tw(l)) + α).

Let us now estimate ρ(α|∂tw(l)), namely ρ(α|W (l)). For function φ defined on [0,∞) ×
[0, 1], denote

ρ(α, τ |φ) = sup
|t′−t′′|≤α,|x′−x′′|≤α,
t′, t′′∈[0,τ ], x′, x′′∈[0,1]

‖φ(t′, x′)− φ(t′′, x′′)‖, τ ≥ 0, α ≥ 0.

Since w(l) is in D(ε′), we have

ρ(α|W (l)) = ρ(α, T ∗|W (l)) = sup
0≤τ≤T∗

ρ(α, τ |W (l)).

Let us estimate ρ(α, τ |W (l)) for τ in [0, T ∗]. Integrating (45) along the characteristics χ
(l)
i

and recalling (14) and (15), we obtain

W
(l+1)
i (t, x) = I

(l+1)
i (s

in,(l)
i (t, x), χ

(l)
i (0; t, x))+J

(l+1)
i (t, x), (t, x) ∈ [0,∞)×[0, 1], 1 ≤ i ≤ n,
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where

J
(l+1)
i (t, x) =

∫ t

s
in,(l)
i (t,x)

a
(l)
i (s, χ

(l)
i (s; t, x))W

(l+1)
i (s, χ

(l)
i (s; t, x))ds, 1 ≤ i ≤ n,

I
(l+1)
i (s

in,(l)
i (t, x), χ

(l)
i (0; t, x)) =


W

(l+1)
i (s

in,(l)
i (t, x), 1), 1 ≤ i ≤ m, (t, x) ∈ I(l)i ,

W
(l+1)
i (s

in,(l)
i (t, x), 0), m+ 1 ≤ i ≤ n, (t, x) ∈ I(l)i ,

W
(l+1)
i (0, χ

(l)
i (0; t, x)), 1 ≤ i ≤ n, (t, x) ∈ J (l)

i .

Then we split the estimate of ρ(α, τ |W (l+1)) into four parts.

1. Estimate of ρ(α, τ |W (l+1)
i (0, χ

(l)
i (0; ·, ·))) for 1 ≤ i ≤ n. Due to (22), there exists a

constant C9 > 0 such that for 1 ≤ i ≤ n and (t′, x′), (t′′, x′′) in [0,∞)× [0, 1],

|χ(l)i (0; t′, x′)− χ(l)i (0; t′′, x′′)| ≤ C9

2
(|t′ − t′′|+ |x′ − x′′|).

Therefore, for 1 ≤ i ≤ n, we have the implication

(|t′ − t′′| ≤ α, |x′ − x′′| ≤ α)⇒ (|χ(l)i (0; t′, x′)− χ(l)i (0; t′′, x′′)| ≤ C9α).

It follows from (28) that there exists a constant C10 > 0 such that for 1 ≤ i ≤ n,

ρ(α, τ |W (l+1)
i (0, χ

(l)
i (0; ·, ·))) ≤ C10ρ(α|W (l+1)

i (0, ·)).

Using (19), (26) and the expression of W
(l+1)
i (0, ·) in (45), we obtain that there exists

a constant C11 > 0 such that for 1 ≤ i ≤ n,

ρ(α, τ |W (l+1)
i (0, χ

(l)
j (0; ·, ·))) ≤ C11(ρ(α|∂xw0) + α). (54)

2. Estimate of ρ(α, τ |W (l+1)
i (s

in,(l)
i (·, ·), 0)) for m+ 1 ≤ i ≤ n. Similarly, by (23) and (28),

there exists a constant C12 > 0 such that for m+ 1 ≤ i ≤ n,

ρ(α, τ |W (l+1)
i (s

in,(l)
i (·, ·), 0)) ≤ C12ρ(α, τ |W (l+1)

i (·, 0)).

It follows from (21), (26), (27) and the expression of W
(l+1)
+ (t, 0) in (45) that there

exists a constant C13 > 0 such that for m+ 1 ≤ i ≤ n,

ρ(α, τ |W (l+1)
i (s

in,(l)
i (·, ·), 0)) ≤ C13(ρ(α, τ |W (l+1)

− (·, 0)) + α)

≤ C13(ρ(α, τ |W (l+1)
− ) + α).

(55)

3. Estimate of ρ(α, τ |W (l+1)
i (s

in,(l)
i (·, ·), 1)) for 1 ≤ i ≤ m. Similarly, by (23) and (28),

there exists a constant C14 > 0 such that for 1 ≤ i ≤ m,

ρ(α, τ |W (l+1)
i (s

in,(l)
i (·, ·), 1)) ≤ C14ρ(α, τ |W (l+1)

i (·, 1)).

Using (21), (23), (26)-(28), (34), (38), (46) and the expression of W
(l+1)
− (·, 1) in (45),

we obtain that there exist constants C15 > 0 such that for 1 ≤ i ≤ m,

ρ(α, τ |W (l+1)
i (s

in,(l)
i (·, ·), 1)) ≤ C15(ρ(α|ζ′i) + ρ(α|η′i) + ρ(α|r′)

+ ε′ max
m+1≤j≤n

ρ(α, τ |∂tsout,(l)j (·, 0)) + ε′ρ(α, τ |∂tsout,(l)i (·, 1)) + (1 + τ−10 )α).

Since ζ′i and η′i are uniformly continuous on the domain [0, τ0/2] for 1 ≤ i ≤ m, there
exists a function ρτ0 : [0,∞)→ [0,∞), satisfying

ρτ0(α)→ 0, as α→ 0,
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such that for 1 ≤ i ≤ m,

ρ(α, τ |W (l+1)
i (s

in,(l)
i (·, ·), 1)) ≤ C15(ρ(α|r′) + ρτ0(α)

+ ε′ max
m+1≤j≤n

ρ(α, τ |∂tsout,(l)j (·, 0)) + ε′ρ(α, τ |∂tsout,(l)i (·, 1))).

Let us now estimate ρ(α, τ |∂tsout,(l)j (·, 0)) for m + 1 ≤ j ≤ n. Similar estimate holds

also for ρ(α, τ |∂tsout,(l)i (·, 1)) with 1 ≤ i ≤ m. Noticing the expression of ∂ts
out,(l)
i (t, x)

in (16) and (17), for (t, x) in [0,∞)× [0, 1] and 1 ≤ i ≤ n, denote

F
(l)
i (t, x) = ∂xλi(x,w

(l)(t, x)) +∇yλi(x,w(l)(t, x))∂xw
(l)(t, x).

It follows from (19), (20), (22), (23) and (26)-(28) that there exist constants
C16, C17, C18 > 0 such that for m+ 1 ≤ j ≤ n,

ρ(α, τ |∂tsout,(l)j (·, 0)) ≤ C16

(
ρ

(
α, τ

∣∣∣∣∣
∫ s

out,(l)
j (·,0)

·
F

(l)
j (τ, χ

(l)
j (τ ; ·, 0))dτ

)
+ α

)
≤ C17(ρ(α, T ∗|F (l)

j ) + α) ≤ C18(ρ(α, T ∗|W (l)) + α).

Therefore, it follows that there exists a constant C19 > 0 such that for 1 ≤ i ≤ m,

ρ(α, τ |W (l+1)
i (s

in,(l)
i (·, ·), 1)) ≤ C19(ρ(α|r′) + ρτ0(α) + ε′ρ(α, T ∗|W (l))). (56)

4. Estimate of ρ(α, τ |J(l+1)
i ) for 1 ≤ i ≤ n. It follows from (19), (22), (23) and (28), there

exist constants C20, C21 > 0 such that for 1 ≤ i ≤ n,

ρ(α, τ |J(l+1)
i ) ≤ C20

(∫ τ

0
ρ(α|(a(l)i W

(l+1)
i )(s, χ

(l)
i (s; ·, ·)))ds+ α

)
≤ C21

(∫ τ

0
ρ(α|(a(l)i W

(l+1)
i )(s, ·))ds+ α

)
≤ C21

(∫ τ

0
ρ(α, s|a(l)i W

(l+1)
i )ds+ α

)
.

(57)

Recalling (19), (26) and (47), there exists a constant C22 > 0 such that

ρ(α, s|a(l)i W
(l+1)
i ) ≤ C22(ρ(α, s|W (l)) + ρ(α, s|W (l+1)

i ) + α). (58)

Therefore, it follows from (57) and (58) that there exists a constant C23 > 0 such that

ρ(α, τ |J(l+1)
i ) ≤ C23

(∫ τ

0
[ρ(α, s|W (l)) + ρ(α, s|W (l+1)

i )]ds+ (1 + T ∗)α

)
. (59)

Consequently, it follows from (54), (55), (56) and (59) that there exists a constant C24 > 0
such that for τ in [0, T ∗],

ρ(α, τ |W (l+1))

≤ C24

(∫ τ

0
[ρ(α, s|W (l)) + ρ(α, s|W (l+1))]ds+ ρ̂τ0,T∗(α,w

0, r′) + ε′ρ(α, T ∗|W (l))

)
, (60)

where
ρ̂τ0,T∗(α,w

0, r′) = ρ(α|∂xw0) + ρ(α|r′) + ρτ0(α) + T ∗α.

Without loss of generality, we assume that C24 > 1 and

ρ(α, T ∗|W (0)) ≤ ρ̂τ0,T∗(α,w
0, r′), (61)
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since W (0) is uniformly continuous on the domain [0, T ∗]× [0, 1]. We claim that for all l ≥ 0
and for some large positive constant L,

max
0≤τ≤T∗

ρ(α, τ |W (l))e−Lτ ≤ 3C24ρ̂τ0,T∗(α,w
0, r′), (62)

provided that ε′ is sufficiently small. Due to (61), the claim (62) holds for l = 0. Assume that
(62) holds for some l > 0. It follows from (60) that for some L > 0,

ρ(α, τ |W (l+1))

≤ C24ρ̂τ0,T∗(α,w
0, r′)

(
1 +

3C24

L
(eLτ − 1) + 3ε′C24eLT

∗
)

+ C24

∫ τ

0
ρ(α, s|W (l+1))ds.

By Gronwall’s inequality, we obtain that for some L > 0,

ρ(α, τ |W (l+1)) ≤ C24ρ̂τ0,T∗(α,w
0, r′)

(
1 +

3C24

L
(eLτ − 1) + 3ε′C24eLT

∗
)

eC24τ ,

which implies that for some L > 0,

ρ(α, τ |W (l+1))e−Lτ

≤ C24ρ̂τ0,T∗(α,w
0, r′)

(
3C24

L
eC24τ + e−(L−C24)τ

(
1− 3C24

L
+ 3ε′C24eLT

∗
))

.

It follows that

ρ(α, τ |W (l+1))e−Lτ ≤ C24ρ̂τ0,T∗(α,w
0, r′)

(
3C24

L
eC24T

∗
+ 1− 3C24

L
+ 3ε′C24eLT

∗
)
,

provided that
L > 3C24. (63)

Taking L large enough such that

3C24

L
eC24T

∗
+ 1− 3C24

L
≤ 3

2
,

namely

L ≥ 6C24(eC24T
∗
− 1), (64)

and taking ε′ small enough such that

0 < ε′ ≤ e−LT
∗

2C24
, (65)

we obtain that (62) holds for l + 1.
Consequently, for all l ≥ 0 and for some large positive constant L satisfying (63) and

(64), we have

ρ(α|W (l)) = ρ(α, T ∗|W (l)) ≤ 3C24eLT
∗
ρ̂τ0,T∗(α,w

0, r′),

provided that ε is small enough such that (65) holds. Since ∂xw
0 and r′ are uniformly contin-

uous on the domain [0, 1] and [0, T ∗] respectively, we have that {∂tw(l)}∞l=0 and {∂xw(l)}∞l=0
are uniformly equicontinuous on the domain [0, T ∗]× [0, 1]. Then by Ascoli theorem, we have

that {w(l)}∞l=0 process a subsequence that converges in C1([0, T ∗] × [0, 1])n. It is clear that
the limit is a C1-solution to system (39).
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Step 4. We next establish the uniqueness. Let w and ŵ in C1([0,∞) × [0, 1])n be two
solutions to system (39). Set v = ŵ − w in [0,∞)× [0, 1]. Then we have

∂tv(t, x) + Λ(x,w(t, x))∂xv(t, x) + f(t, x, v(t, x)) = 0, t ≥ 0, 0 ≤ x ≤ 1,

v+(t, 0) = Q(w−(t, 0) + v−(t, 0))−Q(w−(t, 0)), t ≥ 0,

vi(t, 1) = (1− ηi(t))
[
Q†i (r̃

w+v
i (t))−Q†i (r̃

w
i (t))

]
, t ≥ 0, 1 ≤ i ≤ m,

v(0, x) = 0, 0 ≤ x ≤ 1,

(66)

where
f(t, x, v(t, x)) = [Λ(x,w(t, x) + v(t, x))− Λ(x,w(t, x))]∂xŵ(t, x).

Noticing ‖w‖C1([0,∞)×[0,1])n < ε′, ‖ŵ‖C1([0,∞)×[0,1])n < ε′, and (50), it follows from (19),
(21) and (25) that there exists a constant C25 > 0 such that for t ≥ 0, 0 ≤ x ≤ 1 and
1 ≤ i ≤ m,

|f(t, x, v(t, x))| ≤ C25‖ŵ‖C1([0,∞)×[0,1])n‖v(t, x)‖ ≤ C25ε
′‖v(t, x)‖,

‖Q(w−(t, 0) + v−(t, 0))−Q(w−(t, 0))‖ ≤ C25‖v−(t, x)‖,∣∣∣(1− ηi(t)) [Q†i (r̃w+v
i (t))−Q†i (r̃

w
i (t))

]∣∣∣ ≤ C25‖r‖C1([0,∞))p‖v‖C0([0,∞)×[0,1])n

≤ C25ε
′‖v‖C0([0,∞)×[0,1])n .

(67)
Integrating (66) along the characteristics χwi and using the estimates (67), we obtain that
there exists a constant C26 > 0 such that for t ≥ 0 and 0 ≤ x ≤ 1,

‖v+(t, x)‖ ≤ C26(‖v−‖C0([0,∞)×[0,1])m + ε′‖v‖C0([0,∞)×[0,1])n),

‖v−(t, x)‖ ≤ C26ε
′‖v‖C0([0,∞)×[0,1])n .

It follows that
v = 0,

if ε′ is small enough. Then the uniqueness follows. The estimate (40) follows from (51). The
proof is complete. �

3.3 Finite-time stability of z-system

Let w in C1([0,∞)×[0, 1])n be the solution to system (39). Then we can write z-system
(36) as

∂tz(t, x) + Λ(x,w(t, x))∂xz(t, x) = 0, t ≥ 0, 0 ≤ x ≤ 1,

z+(t, 0) = Q(z−(t, 0) + Π−(t, 0))−Π+(t, 0), t ≥ 0,

z−(t, 1) = ζ(t)− η(t)Πi(t, 1), t ≥ 0,

z(0, x) = w0(x)−Π(0, x), 0 ≤ x ≤ 1,

(68)

where Π in C1([0,∞)× [0, 1])n is the solution to the regulator equations

∂tΠ(t, x) + Λ(x,w(t, x))∂xΠ(t, x) = 0, t ≥ 0, 0 ≤ x ≤ 1,

Π+(t, 0) = Q(Π−(t, 0)), t ≥ 0,

Π+(t, 1) = r(t), t ≥ 0.

(69)
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From (33), we have that for t ≥ τ0/2,

z−(t, 1) = 0.

It follows from the characteristic method that

z−(t, ·) = 0, t ≥ sout,wm (τ0/2, 1).

Then by the boundary condition Π+(t, 0) = Q(Π−(t, 0)) in (69) and boundary
condition z+(t, 0) = Q(z−(t, 0) + Π−(t, 0))−Π+(t, 0) in (68), we have

z+(t, 0) = 0, t ≥ sout,wm (τ0/2, 1).

Using the characteristic method again, we have

z+(t, ·) = 0, t ≥ sout,wm+1 (sout,wm (τ0/2, 1), 0).

Recalling τm and τm+1 defined in (8), it follows from ‖w‖C1([0,∞)×[0,1])n < ε′ and (25)
that for t ≥ 0,

|sout,wm (t, 1)− t− τm| ≤ τ0/4, |sout,wm+1 (t, 0)− t− τm+1| ≤ τ0/4,

if ε′ ≤ C27τ0 for some positive constant C27. Then it follows from τ0 = T − τm− τm+1

that
sout,wm+1 (sout,wm (τ0/2, 1), 0) ≤ T.

Therefore, we have
z+(t, ·) = 0, t ≥ T,

which implies that
ey(t) = z+(t, 1) = 0, t ≥ T.

This concludes the proof of Theorem 5.

4 Conclusion

This paper considers the finite-time output regulation problem for quasilinear hyper-
bolic systems. Under the assumption that the reference signal becomes a constant
after some moment, we solve the single-boundary output regulation problem with
single-boundary control. The rank condition at the uncontrolled boundary ensures that
the control can propagate through this boundary condition to all state components,
thereby achieving output regulation. We employ time-varying feedback regulator to
achieve this goal. The output regulation problem for quasilinear hyperbolic systems
still presents many open challenges. For instance, it would be worthwhile to explore
whether the approaches developed in [25] can be extended to quasilinear hyperbolic
systems. Specifically, one can examine the feasibility of achieving output regulation for
such systems by a nonlinear time-invariant feedback regulator. Additionally, robust
output regulation with respect to system parameters remains an unresolved issue.
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Appendix A Dynamics for ζ and η

Here we provide the dynamics for ζi and ηi such that ζi and ηi satisfy (33) and (34)
for 1 ≤ i ≤ m. The dynamics are established by [2]. We restate them here and provide
a more precise estimate with respect to τ0. To simplify the notations we drop the
subscript i in this appendix. We write ζ = ω+ψ where ω and ψ satisfy the dynamics

ω′(t) = − αω(t)

(ω(t)2 + ψ(t)2)1/3
, ψ′(t) = − βψ(t)

(ω(t)2 + ψ(t)2)1/3
, (A1)

with
ω(0) + ψ(0) = a, −αω(0)− βψ(0) = bY.

Therein, α and β are two distinct positive numbers, and Y = (ω(0)2 + ψ(0)2)1/3,
a = w0

i (1) and b = −λi(1, w0(1))∂xw
0
i (1) with ‖w0‖C1([0,1])n < δ. We now show that

under appropriate choice of α and β, ω(0) and ψ(0) can be chosen as continuous
functions of a and b. Indeed, consider the equation Pa,b(Y ) = 0, where

Pa,b(Y ) := (α− β)2Y 3 − 2b2Y 2 − 2ab(α+ β)Y − a2(α2 + β2).

We consider Pa,b(Y ) = 0 in four cases.
Case 1: a = b = 0. There is a unique solution Y = 0.

Case 2: a = 0, b 6= 0. There is a unique solution Y = 2b2

(α−β)2 .

Case 3: a 6= 0, b = 0. There is a unique solution Y = (a
2(α2+β2)
(α−β)2 )1/3.

Case 4: a 6= 0, b 6= 0. Let Y = Z + 2b2

3(α−β)2 . We have

Z3 + pZ + q = 0, (A2)

where

p = − 2

(α− β)2

(
ab(α+ β) +

2b4

3(α− β)2

)
,

q = − 1

(α− β)2

(
16b6

27(α− β)4
+

4ab3(α+ β)

3(α− β)2
+ a2(α2 + β2)

)
.

Let

∆ =
q2

4
+
p3

27
=

a4

108(α− β)6

[
16

(
b3

a

)2

+8(α+ β)(5α2 + 5β2 − 8αβ)
b3

a
+ 27(α− β)2(α2 + β2)2

]
.

For x in R, denote

∆̃(x) = 16x2 + 8(α+ β)(5α2 + 5β2 − 8αβ)x+ 27(α− β)2(α2 + β2)2.
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We have

∆′ = [8(α+β)(5α2+5β2−8αβ)]2−4·16·27(α−β)2(α2+β2)2 = −128(α2−4αβ+β2)3.

Therefore, ∆ > 0 for all a, b 6= 0 if α2 − 4αβ + β2 > 0. By Cardano’s formula, (A2)
has only one real root

Z = 3
√
u1 + 3

√
u2,

with
u1,2 = −q

2
±
√

∆,

if α2 − 4αβ + β2 > 0. Noticing that q < 0 for all a, b 6= 0, we have Z > 0.
Consequently, the equation Pa,b(Y ) = 0 has a unique positeve solution

Y =
2b2 + 3

√
û1 + 3

√
û2

3(α− β)2
(A3)

with

û1,2 = 8b6 + 18ab3(α+ β)(α− β)2 +
27

2
a2(α2 + β2)(α− β)4 ± 3

√
3

2
(α− β)3

√
∆̂,

∆̂ = 16a2b6 + 8a3b3(α+ β)(5α2 + 5β2 − 8αβ) + 27a4(α2 + β2)2(α− β)2,

if α2 − 4αβ + β2 > 0.
Noticing that (A3) is compatible with cases 1, 2, and 3, we have that Y is

continuous with respect to a and b.
Then we need to take suitable α and β such that ζ(t) = 0 for t ≥ τ0/2 and

‖ζ‖C1([0,∞)) ≤ C‖w0‖C1([0,1])n . Without loss of generality, we assume β > α > 0. Let

k0 > 2 +
√

3 be fixed. Take β = k0α so that α2 − 4αβ + β2 > 0. Denote Φ(t) =
ω(t)2 + ψ(t)2 for t ≥ 0. It follows from (A1) that

Φ′(t) = −2α
ω(t)2 + k0ψ(t)2

Φ(t)1/3
≤ −2αΦ(t)2/3.

A direct calculation gives that Φ(t) = 0 for t ≥ 3Φ(0)1/3/(2α) = 3Y/(2α). Therefore,
ζ(t) = ω(t) + ψ(t) = 0 for t ≥ τ0/2 if we take α large enough such that

3Y

α
≤ τ0. (A4)

In order to estimate the dependency of α on ‖w0‖C1([0,1])n and τ0, we need to estimate
the dependency of Y on α, a and b. Using the inequality

(
k∑
i=1

yi

) 1
m

≤
k∑
i=1

y
1
m
i , ∀m, k ∈ N+, y1, · · · , yk ∈ R+,
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we obtain from (A3) that there exists a constant Ck0 > 0, depending only on k0, such
that

Y ≤ Ck0

(
|a| 23 +

|ab| 12
α

1
2

+
|a| 13 |b|
α

+
b2

α2

)
. (A5)

Recalling a = w0
i (1) and b = −λi(1, w0(1))∂xw

0
i (1) with ‖w0‖C1([0,1])n < δ and (19),

we have that there exists a constant Cδ,k0 > 0, depending only on δ and k0, such that

Y

α
≤ Cδ,k0 P̃

‖w0‖
2
3

C1([0,1])n

α

 ,

with P̃ (y) = y+y3/2+y2+y3. Combined with (A4), we have that ζ(t) = ω(t)+ψ(t) = 0
for t ≥ τ0/2 if

α ≥ ‖w0‖
2
3

C1([0,1])n max

{
12Cδ,k0
τ0

, 1

}
. (A6)

Take α as the right-hand side of (A6). Now we estimate the C1-norm of ζ. Since
Φ(t) is monotonically decreasing as t increases, it follows from (A5) and (A6) that
there exists a constant C ′δ,k0 > 0, depending only on δ and k0, such that for all t ≥ 0,

|ζ(t)|2 ≤ 2Φ(t) ≤ 2Y 3 ≤ C ′δ,k0‖w
0‖2C1([0,1])n ,

|ζ ′(t)|2 ≤ 2k20α
2Φ(t)1/3 ≤ 2k20α

2Y ≤ C ′δ,k0(1 + τ−20 )‖w0‖2C1([0,1])n .

Similarly, one can build the dynamics for η. We now have a = 1 and b = 0. We
write η = ω̃ + ψ̃ where ω̃ and ψ̃ satisfy the dynamics

ω̃′(t) = − α̃ω̃(t)

(ω̃(t)2 + ψ̃(t)2)1/3
, ψ̃′(t) = − β̃ψ̃(t)

(ω̃(t)2 + ψ̃(t)2)1/3
,

with
ω̃(0) + ψ̃(0) = 1, −α̃ω̃(0)− β̃ψ̃(0) = 0.

Take β̃ = k0α̃ with k0 > 2 +
√

3. We have

Ỹ = (ω̃(0)2 + ψ̃(0)2)
1
3 =

(
k20 + 1

(k0 − 1)2

) 1
3

.

Similarly, η(t) = ω̃(t) + ψ̃(t) = 0 for t ≥ τ0/2 if

α̃ ≥ 3Ỹ

τ0
= 3

(
k20 + 1

(k0 − 1)2

) 1
3

τ−10 . (A7)

Take α̃ as the right-hand side of (A7). We have that for all t ≥ 0,

|η(t)|2 ≤ 2Ỹ 3 =
2k20 + 2

(k0 − 1)2
, |η′(t)|2 ≤ 2k20α̃

2Ỹ =
18k20(k20 + 1)

(k0 − 1)2
τ−20 .
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Now we obtain the dynamics for ζ and η such that ζ and η satisfy (33) and (34).
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