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This work considers the output regulation problem for an infinite-dimensional system. Specifically, a 
regulator for boundary-controlled time-varying 2×2 hyperbolic systems is designed. The output regulation 
is solved in finite time. Moreover, the disturbances can act within the space domain, and affect both 
boundaries and the to-be-controlled output. The to-be-controlled output is pointwise and may be located 
either at the boundary or at any point inside of the space domain. The feedback gain is a time-dependent 
function rather than a constant vector. Time-varying setting also brings an advantage to the problem, since 
the solvability of the regulator equations does not depend on the eigenmodes of the signal model. In
this work, the regulator equations have a solution for any signal model. The finite-time reference signal
and disturbance observer are also designed. The output feedback regulator consists of the state feedback
regulator and the finite-time observer. A numerical example illustrates the regulator design and the finite-
time regulation.

Keywords : output regulation; hyperbolic systems; time-varying systems; observer d esign.

1. Introduction 

A classical problem in control theory is the output regulation problem. It consists of designing a feedback 
control such that the output of the system tracks a given reference and rejects the disturbances. If these 
exogenous signals can be modelled by a known signal model, there is a systematic solution to the 
output re gulation problem for a linear finite-dimensional system. The output regulation for linear finite-
dimensional systems is well-understood and is well introduced in, for example, Saberi et al. (2000). 
One successful method traces back to the work Davison (1976), where the signal model is included 
in the controller dynamics and the controller is driven by the output tracking error. Therefore, in this 
method the output to be controlled is assumed to be measured. The main advantage of this method is 
its embedded robustness. Specifi cally, robustness in the output regulation problem is with respect to
small perturbations of system parameters. More recently, some works focusing on output regulation for
nonlinear finite-dimensional systems include Astolfi et al. (2022); Bin et al. (2023). 

The output regulation problem for infinite-dimensional systems, especially for partial differential 
equations (PDEs) system has received m uch attention in recent years. There has been a very fruitful
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2 Y. BAI ET AL.

literature on the output regulation problem for the first-order hyperbolic system. In Anfinsen & Aamo 
(2015); Anfinsen et al. (2017), a boundary disturbance rejection for linear 2 × 2 hyperbolic systems 
was considered by using the backstepping approach. Concerning robust output regulation, Deutscher 
(2017b) used backstepping method to design a robust state feedback regulator for boundary-controlled 
linear 2 × 2 hyperbolic systems with spatially varying coefficients. The disturbance can act within 
the domain, affecting both boundaries and the output to be controlled. Furthermore, the output to be
controlled is assumed to be available for measurement. Therefore, the regulator design is based on the
internal model principle. Later on, Deutscher & Gabriel (2018) generalized this work into general n × n 
linear heterodirectional hyperbolic systems, where the so-called p-copy internal model principle has to
be fulfilled in order to achieve the robust output regulation.

Another important work on output regulation for hyperbolic systems is Deutscher (2017a), where 
finite-time output regulation was achieved for boundary controlled linear 2 × 2 hyperbolic systems 
by using the backstepping method. The output to be controlled does not need to be measurable. 
Therefore, the internal model principle cannot be applied. However, the design of an observer-based 
feedforward controller is still possible. The solution of the state feedback regulator problem is based 
on the solvability of the corresponding regulator equations which are described by ordinary differential
equations (ODEs). The solvability condition is determined for the regulator equations in terms of the
plant transfer behavior. The finite-time output regulation problem is achieved by the finite-time state
feedback regulator, the finite-time reference observer and the finite-time disturbance observer. Moreover,
Deutscher (2017c); Deutscher & Gabriel (2020) achieved finite-time output regulation for general n × n 
hyperbolic systems with different convergent times. Other works focusing on output regulation of other
types of PDEs include Lhachemi et al. (2021); Guo & Zhao (2022) for heat equation, Balogoun et al. 
(2023) for Korteweg-de Vries equation, Guo & Meng (2021) for beam equation and Liu et al. (2022) for 
thermoelastic system.

Concerning the output regulation for non-autonomous system, Ichikawa & Katayama (2006) pro-
vided general conditions under which the output regulation problem for finite-dimensional system can
be solved. In Zhang & Serrani (2009), robust output regulation for linear periodic system was solved. F or
the output regulation for infinite-dimensional system, Paunonen (2017) consider the output regulation 
problem for continuous-time periodic linear systems with periodic reference and disturbance signals.

In this paper, we consider the finite-time output regulation problem for linear time-varying 2 × 2 
hyperbolic system. Therein, the disturbances can act within the domain, affecting both boundaries and the 
output to be controlled. The output to be controlled may be located at a boundary or is defined pointwise
in-domain. Different from the system in Deutscher (2017a), the transport velocity, boundary coupling 
coefficient and disturbance input locations are time dependent in our system. This brings new difficulties 
and challenges in the output regulation problem. The regulator design is based on the solvability of the
corresponding regulator equations which are PDEs rather than ODEs as in Deutscher (2017a). Therefore, 
the feedback gain is a time dependent function rather than a constant vector. In the meanwhile, time-
varying settings also bring some advantages. Since the solution of regulator equations is time dependent, 
the solvability of regulator equations depends no longer on the relationship between the plant transfer
behavior and the eigenmodes of the signal model. In this work, the regulator equations are solvable for
any signal model. In contrast, the regulator equations in Deutscher (2017a) are solvable if the eigenmodes 
of the signal model are not blocked by the transfer behavior of the time-independent hyperbolic system. 
For observer design, due to the time-varying nature of the system, we employ the concept of uniform
observability (introduced in Menold et al. (2003)) and provide a constructive observer design under this 
assumption. Moreover, we present a computationally feasible method for implementing the observer.
Finally, we validate our theoretical results with a numerical example, demonstrating the effectiveness
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REGULATION FOR HYPERBOLIC SYSTEMS 3

of our approach. The main contribution of this work can be summarized as follows. First, we solve the 
finite-time output regulation problem for time-varying hyperbolic systems, which introduces significant 
challenges due to the time-dependent PDE structure of the regulator equation. Second, we deriv e explicit
expressions for both the feedback control law and the observer design, and based on these results, we
provide a numerical example to support our theoretical findings. In our related work Bai et al. (2025), 
we study a more general setting of time-varying hyperbolic systems. However, due to the complexity
of the output operator and the presence of zeroth-order terms, Bai et al. (2025) only establishes the 
existence of a solution to the regulator equation without providing an explicit expression or numerical 
simulations. In contrast, the current paper offers constructive solutions and numerical validation, making
it more applicable in practice.

This paper is organized as follows. In Section 2, we describe the linear time-varying hyperbolic 
system that we consider and we give the definition of the regulation problem. Section 3 provides some 
physical examples and some preliminaries about the characteristics associated with linear time-varying 
hyperbolic systems. We state and prove the first main result, the state feedback regulator, in Section 4. 
The finite-time reference signal and disturbance observer are introduced in Section 5. The second main 
result, the output feedback regulator, is also proven in Section 5. A numerical simulation is gi ven in
Section 6. Concluding remarks are collected in Section 7. 

2. Problem statement 

Consider the following linear time-varying 2 × 2 hyperbolic system, 

∂tw(t, x) = Λ(t, x)∂xw(t, x) + g1(t, x)d1(t), (2.1a)

w1(t, 0) = q0(t)w2(t, 0) + g2(t)d2(t), (2.1b)

w2(t, 1) = q1(t)w1(t, 1) + u(t) + g3(t)d3(t ), (2.1c)

w(t0, x) = w0(x), (2.1d)

y(t) = w1(t, xr) + g4(t)d4(t) , (2.1e)

ym(t) = w2(t, 0). (2.1f)

In Equation (2.1), (t, x) is in D(t0) :=  {(t, x)|t > t0, 0  < x < 1} with t0 ≥ 0, w(t, x) = (w1, w2)
�(t, x) 

in R2 is the state, initial data w0 at time t0 is assumed to be piecewise continuous, u(t) in R is the 
control input, di(t) in R, i = 1, 2, 3, 4, are disturbances, and g1(t, x) in R2, gi(t) in R, i = 2, 3, 4, are 
corresponding disturbance input locations. The output to be controlled y(t) in R is a s ingle boundary
or pointwise output with xr in [0, 1]. The available measurement ym(t) is in R. The functions q0, q1 :
[0, ∞) → R couple the equations of the system on the boundaries x = 0 and x = 1. Let us make the
following assumptions on all coefficients involved in Equation (2.1). 
ASSUMPTION 1. The matrix Λ is diagonal, namely Λ(t, x) = diag(−λ1(t, x), λ2(t, x)) for e very t ≥ 0 and
0 ≤ x ≤ 1.

ASSUMPTION 2. The functions λ1, λ2 and q0 are uniformly away from zero, i.e. there exists ε0 > 0 such
that for every t ≥ 0 and 0 ≤ x ≤ 1,

λ1(t, x)  >  ε0 > 0, λ2(t, x) > ε0 > 0, (2.2)
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4 Y. BAI ET AL.

and there exists εq > 0 such that for every t ≥ 0,

|q0(t)| >  εq > 0. (2.3)

Assumption 2 will be commented in Remark 2 below. 

ASSUMPTION 3. The following regularities hold for Λ, q0 and q1:

Λ ∈ C1(R2)2×2, q0, q1 ∈ C0([0, ∞)), Λ, ∂xΛ ∈ L∞(R2)2×2, q0, q1 ∈ L∞(0, ∞).

Here Λ is defined in R2.  The  value  of  Λ outside D (0) is only used when defining characteristics (see
Section 3.2). 

The functions di :  [0, ∞) → R, i = 1, 2, 3, 4, are disturbances. The corresponding disturbance input
locations satisfy the following assumption.

ASSUMPTION 4. Functions gi, i = 1, 2, 3, 4 are known and have the following regularities

g1 ∈ C0([0, ∞) × [0, 1])2 ∩ L∞((0, ∞) × (0, 1))2, gi ∈ C0([0, ∞)) ∩ L∞( 0, ∞), i = 2, 3, 4.

The disturbances and the reference input r(t) in R to be asymptotically tracked by the output y(t) can 
be represented by the solutions of the finite-dimensional signal model, for t ≥ t0 ≥ 0, 

v̇(t) = Sv(t), v(t0) = v0 ∈ Rnv , (2.4a) 

r(t) = p�
r vr(t), di(t) = p�

i vd(t), i = 1, 2, 3, 4, (2.4b)

where S in Rnv×nv is a block diagonal matrix, i.e. S = bdiag(Sd, Sr), and v = (v�
d , v�

r )
� with vd in Rnd 

and vr in Rnr , nd + nr = nv. Therefore, we have the ndth order disturbance model v̇d(t) = Sdvd(t), 
vd(t0) = v0 

d, and the nrth order reference model v̇r(t) = Srvr(t), vr(t0) = v0
r . For the design of the

regulator, it is assumed that S, pr and pi, i = 1, 2, 3, 4 are known. For the observer design, it is assumed
that only the reference input r and the measurement ym are known.

This paper concerns the uniform finite-time output regulation problem. Denote by 

ey(t) = y(t) − r(t) (2.5) 

the output tracking error. Let us give the definition of the regulation that we are interested.

DEFINITION 1. Let T0 > 0 and let the disturbances di, i = 1, 2, 3, 4, and the reference input r is generated
by the finite-dimensional signal model (2.4). We say the output y of the system (2.1) achieves the uniform 
finite-time output regulation with settling time T0 by state feedback regulator (resp. by output feedback 
regulator) if there exists a feedback control u = Ks[w, v] (resp. u = Ko[ym, r]) such that for all t0 ≥ 0, 
v0 in R

nv and piecewise continuous w0, the output tracking error ey satisfies ey(t) = 0 for t ≥ t0 + T0.

REMARK 1. The uniformity means that the output regulation is achieved uniformly to the initial time t0.
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REGULATION FOR HYPERBOLIC SYSTEMS 5

3. Preliminaries 

3.1. Motivation of the problem: s ome physical models

As mentioned in Bastin & Coron (2016); Coron et al. (2021), time-varying hyperbolic systems appear in 
the linearized Saint-Venant equations and many other physical models of balance laws. In this s ection,
we give some examples that can be modelled by linear time-varying hyperbolic systems.

EXAMPLE 1 (Mining cable elevator with flexible guides Wang & Krstic (2022)). The lateral vibration 
control of a mining cable elevator with viscoelastic guides can be modelled as a 2×2 hyperbolic system 
coupled with an ODE, given by 

Ẋ(t) = AX(t) + Bz2(t, 0) + B1d(t), 

z1(t, 0) = CX(t) − p1z2(t, 0), 

∂tz1(t, y) = −q1(y)∂yz1(t, y) + c1(y)z1(t, y) + c2(y)z2(t, y), 

∂tz2(t, y) = q2(y)∂yz2(t, y) + c3(y)z1(t, y) + c4(y)z2(t, y), 

z2(t, l(t )) = U(t) + p2z1(t, l (t)), 

with y in [0, l(t)] and t in [0, ∞). The precise physical meanings of the variables in the equation can
be found in (Wang & Krstic, 2022, Chap. 5). This equation is a moving-boundary hyperbolic system. 
Through a coordinate transformation x = y/l(t), the PDE-subsystem can be converted into a hyperbolic 
system with time-dependent speeds. More precisely, let x = y/l(t), w1(t, x) = z1(t, y) and w2(t, x) = 
z 2(t, y). Direct calculation shows that the PDE-subsystem is equivalent to

∂tw1(t, x) = −q1(l(t)x) − l′(t)x 
l(t) 

∂xw1(t, x) + c1(l(t)x)w1(t, x) + c2(l(t)x)w2(t, x), 

∂tw2(t, x) = 
q2(l(t)x) + l′(t)x 

l(t) 
∂xw2(t, x) + c3(l(t)x)w1(t, x) + c4(l(t)x)w2(t, x), 

w1(t, 0) = CX(t) − p1w2(t, 0) ,

w2(t, 1) = U(t) + p2w1(t, 1),

with x in [0, 1] and t in [0, ∞). Note that Assumptions 5.3 and 5.4 in (Wang & Krstic, 2022, Chap. 5) 
ensures that w-system is strictly h yperbolic and maintains different propagation directions.

EXAMPLE 2 (Plug flow chemical reactors Bastin & Coron (2016)). The dynamics of the plug flow 
chemical reactors are then described by the following semi-linear system of balance laws:

∂tTc(t, x) − Vc(t)∂xTc(t, x) − ko(Tc(t, x) − Tr(t, x)) = 0, 

∂tTr(t, x) + Vr(t)∂xTr(t, x) + ko(Tc(t, x) − Tr(t, x)) − k1r(Tr(t, x), CA(t, x), CB(t, x)) = 0, 

∂tCA(t, x) + Vr(t)∂xCA(t, x) + r(Tr(t, x), CA(t, x), CB(t, x)) = 0, 

∂tCB(t, x) + Vr(t)∂xCB(t, x) − r(Tr(t, x), CA(t, x), CB(t, x)) = 0.
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6 Y. BAI ET AL.

Then the system is a semi-linear system of balance laws with time-dependent speeds. The pre-
cise physical meanings of the variables in the equation can be found in (Bastin & Coron, 2016, 
Chap. 1.7).

3.2. Preliminaries on c haracteristics

In this section, we introduce some known facts on the characteristics associated with linear time-varying
hyperbolic system (see Coron et al. (2021)). Let χ1 and χ2 be the flow associated with λ1 and −λ2 
respectively, namely for every (t, x) in R2, the functions s �→ χ1(s; t, x) and s �→ χ2(s; t, x) are the 
solution to the ODE, for s in R,

∂ 
∂s 

χ1(s; t, x) = λ1(s, χ1(s; t, x)), χ1(t; t, x) = x, (3.1)

and, for s in R,

∂ 
∂s 

χ2(s; t, x) = −λ2(s, χ2(s; t, x)), χ2(t; t, x) = x, (3.2)

respectively. The existence and uniqueness of the solutions to the ODEs (3.1) and (3.2) follow the 
classical theory. Moreover, due to Assumption 3, the solutions are global and hav e the regularity

χ1, χ2 ∈ C1(R3) . (3.3)

Next we introduce the entry and exit times for the interval [0, 1]. For j = 1, 2, t in R and x in [0, 1], 
let sin 

j (t, x) and sout 
j (t, x) be the entry and exit times of the flow χj(·; t, x) inside the interval [0, 1], namely

the respective unique solutions to

χ1(s
in 
1 (t, x); t, x) = 0, χ1(s

out 
1 (t, x); t, x) = 1, χ2(s

in 
2 (t, x); t, x) = 1, χ2(s 

out
2 (t, x); t, x) = 0.

The existence and uniqueness of sin
j (t, x) and sout

j (t, x) are guaranteed by (2.2) in Assumption 2.2.  Fro  m
(3.3) and by the implicit function theorem, we ha ve

sin 
j , sout 

j ∈ C1(R × [0, 1] ), j = 1, 2. (3.4)

Integrating the ODEs (3.1) and (3.2) and using the assumption (2.2), we have the following bounds for 
every t in R and x in [0, 1],

t − sin 
j (t, x)  <  

1 
ε0 

, sout 
j (t, x) − t <

1

ε0
, j = 1, 2. (3.5)

Similar to the definition of sout 
j (t, x),  let  sr 

1(t) be the exit time of the flow χ1(·; t, 0) inside the interval 
[0, xr], namely the unique solution to χ1(s

r 
1(t); t, 0) = xr. Especially, sr

1(t) = sout
1 (t, 0) if xr = 1.
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REGULATION FOR HYPERBOLIC SYSTEMS 7

4. Finite-time output regulation by state feedback regulator

In this section, we aim to find a finite-time state feedback regulator. We consider the following time 
dependent regulator, 

u(t) = −q1(t)w1(t, 1) + kv(t)
�v(t), (4.1) 

with feedback g ain function kv : [0, ∞) → R
nv to be determined later. By applying (4.1)  to  t  he

system (2.1) and taking the signal model (2.4) into account, we have the closed-loop system, for t ≥ t0, 
0 ≤ x ≤ 1, 

v̇(t) = Sv(t), v(t0) = v0, (4.2a) 

∂tw(t, x) = Λ(t, x)∂xw(t, x) + g̃1(t, x)v(t), ( 4.2b) 

w1(t, 0) = q0(t)w2(t, 0) + g̃2(t)
�v(t), (4.2c) 

w2(t, 1) = kv(t)
�v(t) + g̃3(t)

�v(t), (4.2d) 

w(t0, x) = w0(x), (4.2e) 

ey(t) = w1(t, xr) − (p̃r − g̃4(t))
�v(t ), (4.2f) 

where p̃�
r = (0�

nd , p�
r ), g̃1(t, x) = g1(t, x)(p�

1 , 0�
nr ), g̃i(t)

� = g i(t)(p�
i , 0�

nr
), i = 2, 3, 4, and ey is defined

in (2.5). By the classical method of characteristics (see (Coron et al., 2021, Theorem A.2, Remark A.4)), 
one can prove the following well-posedness result for (4.2b)  t  o (4.2e). 

THEOREM 1. Under Assumptions 1 to 4 and kv in C0([0, ∞))nv ∩ L∞(0, ∞)nv , for every t0 ≥ 0, v0 in 
R

nv and piecewise continuous initial data w0, there exists a unique solution w to system (4.2b)  t  o (4.2e) 
which is piecewise continuous in D (t0).

Let us now state the first main result of this paper.

THEOREM 2. Let Assumptions 1 to 4 hold. Let settling time Tunif(Λ) be defined by 

Tunif(Λ) = sup 
t≥0 

[sout 
1 (sout 

2 (t, 1), 0) − t]. (4.3) 

Choose feedback control u(t) =  −q1(t)w1(t, 1) + kv(t)
�v(t), where feedback gain function kv in 

C0([0, ∞))nv ∩ L∞(0, ∞)nv is defined as follows, for all t ≥ 0,

kv(t)
� = −g̃3(t)

� −
∫ sout 

2 (t,1) 

t 
g̃12(s, χ2(s; t, 1))e(s−t)Sds + q0(s

out 
2 (t, 1))−1

[
−g̃2(s

out 
2 (t, 1))�e(sout 

2 (t,1)−t)S 

+ [p̃r − g̃4(s
r 
1(s

out 
2 (t, 1)))]�e(sr 

1(s
out 
2 (t,1))−t)S −

∫ sr 
1(s

out 
2 (t,1)) 

sout 
2 (t,1) 

g̃11( s, χ1(s; sout
2 (t, 1), 0))e(s−t)Sds

]
. (4.4)

Then, for every t0 ≥ 0, v0 inRnv and piecewise continuous initial data w0, there exists a unique solution w
to system (4.2b)  t  o (4.2e) which is piecewise continuous in D(t0). Moreover, the output y of the system
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8 Y. BAI ET AL.

(2.1) achieves the uniform finite-time output regulation with settling time T unif(Λ) by state feedback
regulator.

For any initial time t0, the time cost sout 
1 (sout 

2 (t0, 1), 0) − t0 is the time to transport along χ2(·; t0, 1) 
from x = 1  to  x = 0 and then along χ1(·; sout 

2 (t0, 1), 0) from x = 0 to x = 1. Therefore, the settling time
Tunif(Λ) is the uniform time cost with respect to the initial time t0. Let us remark that thanks to (3.5), it 
holds 0 < Tunif(Λ) < 2/ε0.

REMARK 2. Equation (2.2) in Assumption 2 is identical to the assumption in Coron et al. (2021), where 
finite-time stabilization problem is considered. As stated in Coron et al. (2021), (2.2) is expected for 
finite-time stabilization. For the output regulation problem, (2.3) is needed in finding the feedback g ain
function kv (see (4)). Therefore, the conditions for the uniform finite-time output regulation are stronger
than the conditions for the finite-time stabilization.

We prove Theorem 2 in two steps. In the first step, we use a change of coordinates to transform 
the system into the error system. Then we prove the error system is finite-time convergent in settling 
time Tunif(Λ), and thus, the output tracking error converges in settling time Tunif(Λ). The second step
is to prove the existence of the change of coordinates. It is formulated by the solvability of the regulator
equations. The feedback gain function kv is determined by the solution to regulator equation (4.6). 

4.1. Removal of the dependency of v

In the first step of designing the regulator, we introduce a bounded invertible change of coordinates to
eliminate the dependency of v in Equations (4.2b)  t  o (4.2f), 

z(t, x) = w(t, x) − Π(t, x)v(t), 

with Π = [Πij]  :  [0, ∞) × [0, 1] → R
2×nv . Then (4.2) takes the form, for t ≥ t0,  0 ≤ x ≤ 1, 

v̇(t) = Sv(t), v(t0) = v0, (4.5a) 

∂tz(t, x) = Λ(t, x)∂xz(t, x), ( 4.5b) 

z1(t, 0) = q0(t)z2(t, 0), (4.5c) 

z2(t, 1) = 0 (4.5d) 

z(t0, x) = w0(x) − Π(t0, x)v0, ( 4.5e) 

ey(t) = z(t, xr) , (4.5f) 

if Π is the solution to the regulator equations, for t ≥ 0, 0 ≤ x ≤ 1,

∂tΠ(t, x) = Λ(t, x)∂xΠ(t, x) − Π(t, x)S + g̃1(t, x), (4.6a)

Π1(t, 0) = q0(t)Π2(t, 0) + g̃2(t)
�, (4.6b)

Π1(t, xr) = (p̃r − g̃4(t))
�, (4.6c)
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REGULATION FOR HYPERBOLIC SYSTEMS 9

and 

kv(t)
� = Π2(t, 1) − g̃3(t)

�, (4.7) 

where Πi(t, x) = (Πi1, · · ·  , Πinv )(t, x) belongs to R1×nv , i = 1, 2. The finite-time stability of z-subsystem
(4.5b)  t  o (4.5d) with settling time Tunif(Λ) defined by (4.3) is a corollary of (Coron et al., 2021, Prop. 
2.12).

Therefore, the uniform finite-time output regulation problem is solved if there e xists a solution Π of
the regulator equation (4.6). 

4.2. Solvability of the r egulator equations

In this section, we prove the solvability of the regulator equation (4.6). Postmultiply (4.6)  by  etS,  the  
matrix exponential of tS, and denote Π̂(t, x) = Π(t, x)etS. This yields the following equations, for t ≥ 0, 
0 ≤ x ≤ 1, 

∂t Π̂(t, x) = Λ(t, x)∂x Π̂(t, x) + ĝ1(t, x), (4.8a) 

Π̂1(t, 0) = q0(t) Π̂2(t, 0) + ĝ2(t)
�, (4.8b) 

Π̂1(t, xr) =  ̂g4(t)
�, (4.8c) 

where ĝ1(t, x) =  ̃g1(t, x)etS, ĝ2( t)� = g̃2(t)
�etS and ĝ4(t)

� = (p̃r − g̃4(t))
�etS.

REMARK 3. The solvability of (4.8) does not depend neither on the signal matrix S nor on the initial 
condition v0. Namely, for any signal matrix S and initial condition v0, there exists a solution to (4.8). 
This property remains valid when considering hyperbolic systems with zeroth-order terms and more
general output operators, as detailed in Bai et al. (2025). This property is essentially different from the 
time independent case, where the regulator equation becomes an ODE dependent on S. This ODE is
solvable if and only if S satisfies a condition related to the zeros of the transfer function (see Deutscher 
(2017a)). Anexample from item 2 of Remark 4.3 in Bai et al. (2025) illustrates that a time-varying 
feedback regulator may still exist even when the condition of Deutscher (2017a) is not satisfied.

We use characteristics to solve the regulator equations. Notice that the regulator equation (4.8)  is  
only coupled by the boundary condition (4.8b). Therefore, we first solve Π̂1(t, 0) from (4.8a)  t  o (4.8c), 
then solve Π̂2(t, 1) from (4.8a)  t  o (4.8b). Recalling the definitions of sr 

1(t) and sout
2 (t, x) in Section 3.2, 

by the characteristics, from (4.8a), we obtain, for t ≥ 0, 

Π̂1(t, 0) = Π̂1(s
r 
1(t), xr) −

∫ sr 
1(t) 

t 
ĝ11(s, χ1(s; t, 0))ds, (4.9) 

where ĝ11 is the first ro w of ĝ1. Similarly, from (4.8a), we get that, for t ≥ 0,

Π̂2(t, 1) = Π̂2(s
out 
2 (t, 1), 0) −

∫ sout 
2 (t,1) 

t 
ĝ12(s, χ2(s; t, 1))ds, (4.10)
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10 Y. BAI ET AL.

where ĝ12 is the second row of ĝ1. Consequently, it follows from (4.8b), (4.8c), (4.9) and (4.10) that, for 
t ≥ 0,

Π̂2(t, 1) = −
∫ sout 

2 (t,1) 

t 
ĝ12(s, χ2(s; t, 1))ds + q0(s

out 
2 (t, 1))−1

[
ĝ4(s

r 
1(s

out 
2 (t, 1)))�

−ĝ2(s
out 
2 (t, 1))� −

∫ sr 
1(s

out 
2 (t,1)) 

sout 
2 (t,1) 

ĝ11(s , χ1(s; sout
2 (t, 1), 0))ds

]
. (4.11)

Postmultiplying (11)  by  e−tS, from (2.3), we obtain that, for t ≥ 0, 

Π2(t, 1) = −
∫ sout 

2 (t,1) 

t 
g̃12(s, χ2(s; t, 1))e(s−t)Sds + q0(s

out 
2 (t, 1))−1

[
−g̃2(s

out 
2 (t, 1))�e(sout 

2 (t,1)−t)S 

+[p̃r − g̃4(s
r 
1(s

out 
2 (t, 1)))]�e(sr 

1(s
out 
2 (t,1))−t)S −

∫ sr 
1(s

out 
2 (t,1)) 

sout 
2 (t,1) 

g̃11( s, χ1(s; sout
2 (t, 1), 0))e(s−t)Sds

]
.

(4.12)

Therefore, the expression (4) of the feedback gain function kv is given by (4.7) and (12). It follows from 
Assumptions 2 to 4, (3.4), (3.5) and (12) that kv is continuous and bounded.

REMARK 4. The solution to the regulator equation (4.8) may not be unique. In fact, when xr < 1, by 
the characteristic method, the values of Π1 in {(t, x) ∈ [0, ∞) × [0, 1]|x >  χ1(t; 0, xr)} can be chosen 
arbitrarily, while the values of Π1 in {(t, x) ∈ [0, ∞ ) × [0, 1]|x ≤ χ1(t; 0, xr)} and Π2 in [0, ∞) × [0, 1]
are uniquely determined by the regulator equation (4.8). Thus by (4.7), the gain function k v is uniquely
determined.

5. Finite-time observ ers

As mentioned in Section 2, only the reference input r(t) and the measurement ym(t) are known. In this 
section, we design the observers for the signal state vr, and for the state w and the disturbance state vd,
respectively.

5.1. Finite-time reference signal observer

The finite-time convergent observer has been introduced in the literature (see Engel & Kreisselmeier 
(2002); Deutscher (2017a)). Let us recall the observer design. In this section, we assume that (p�

r , Sr) is 
observable. Consider two identical reference observers 

˙̂v j 
r(t) = Srv̂ j 

r(t) + l j 
r(r(t) − p�

r v̂
j 
r(t)), t > t0, j = 1, 2, 

ˆ v j 
r(t0) =  ̂v j,0 

r , 
(5.1)

with l j 
r in Rnr to be determined later. By assuming Fj

r = Sr − l j
rp�

r , j = 1, 2, and

Fr =
[

F1 
r 0 

0 F2 
r

]
, lr =

[
l1 
r 

l2 
r

]
, v̂r =

[
v̂1 

r 
v̂2 

r

]
, v̂0

r =
[

v̂1,0
r

v̂2,0
r

]
, (5.2)
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REGULATION FOR HYPERBOLIC SYSTEMS 11

we combine these two observers in one equation and use a delay Dr > 0 to generate the finite-time 
reference estimate v̂+

r by 

˙̂vr(t) = Frv̂r(t) + lrr(t), t > t0, v̂r(t0) =  ̂v0 
r , 

v̂+
r (t) =

[
Idnr 0

] [
Bnr eFrDr Bnr

]−1 
(v̂r(t) − eFrDr v̂r(t − Dr)) , 

(5.3) 

where Bnr = [Inr , Inr ]
�. Because of the delay, this observer has initial conditions v̂r(t), t in [t0 − Dr, t0 ].

Without loss of generality, assume that v̂r(t) = v̂0
r for t in [t0 − Dr, t0]. The next proposition proved in

Engel & Kreisselmeier (2002); Deutscher (2017a) shows that the observer v̂+
r converges to vr in finite

time Dr.

PROPOSITION 3. Assume that (p�
r , Sr) is observable. There exists lr such that Fr is Hurwitz and for almost 

all Dr > 0, det[Bnr
eFrDr Bnr

] �= 0. Then, (5.3) is an observer for vr, whose state estimate v̂+
r converges 

to vr at finite time Dr. More precisely, for any t0 ≥ 0, v0 
r , v̂1,0 

r and v̂2,0 
r in Rnr , we have v̂+

r (t) = vr(t) for
t ≥ t0 + Dr.

5.2. Finite-time disturbance observer

In this section, let us assume that Λ, q1 and gi, i = 1, 2, 3, are smooth. The reason for this assumption is
that we need the finite-time convergence observer results from Menold et al. (2003). 

The first step for designing a finite-time disturbance observer is to design an asymptotic disturbance 
observer. To this end, let us consider the following disturbance observer, for (t, x) in D(t0), 

˙̂vd(t) = Sdv̂d(t) + ld(t)(ym(t) −  ̂w2(t, 0)), (5.4a) 

∂tŵ(t, x) = Λ(t, x)∂xŵ(t, x) + ĝ1(t, x)v̂d(t) + lw(t, x)(ym(t) −  ̂w2 (t, 0)), (5.4b) 

ŵ1(t, 0) = q0(t)ym(t) + ĝ2(t)
�v̂d(t), (5.4c) 

ŵ2(t, 1) = q1(t)ŵ1(t, 1) + u(t) + ĝ3(t)v̂d(t ), (5.4d) 

v̂d(t0) =  ̂v0 
d, ŵ(t0, x) =  ̂  w0(x), (5.4e) 

where ˆ vd and ŵ are the observer states, v̂0
d and ŵ0 are the initial data, ym is the measurement defined in

(2.1f), ĝ1(t, x) = g1(t, x)p�
1 , ĝi(t)

� = gi(t)p
�
i , i = 2, 3, and ld and lw are the observer gain functions 

to be determined later. By introducing the observer errors ed = vd − v̂d and ew = w −  ̂w,  we  have  the  
observer error system for (t, x) in D(t0),

ėd(t) = Sded(t) − ld(t)ew,2(t, 0), (5.5a)

∂tew(t, x) = Λ(t, x)∂xew(t, x) + ĝ1(t, x)ed(t) − lw(t, x)ew,2(t, 0), (5.5b)

ew,1(t, 0) =  ̂g2(t)
�ed(t) , (5.5c)

ew,2(t, 1) = q1(t)ew,1(t, 1) + ĝ3(t)
�ed(t). (5.5d)

In order to determine the gain functions ld and lw, we use the time-varying coordinate transformation
to transform the error system (5.5) into a PDE-ODE cascade system. This method is inspired by the
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12 Y. BAI ET AL.

disturbance observer design in Deutscher (2017a). We introduce the following transformations. Let 

εw(t, x) = ew(t, x) − N(t, x)ed(t), (5.6) 

with N defined on (0, ∞)×(0, 1). By direct calculation, the system of ed and εw reads, for (t, x) in D(t0), 

ėd(t) = (Sd − ld(t)N2(t, 0))ed(t) − ld(t)εw,2(t, 0), (5.7a) 

∂tεw(t, x) = Λ(t, x)∂xεw(t, x), (5.7b) 

εw,1(t, 0) = 0, (5.7c) 

εw,2(t, 1) = q1(t)εw,1(t, 1), (5.7d) 

if N satisfies, for (t, x) in (0, +∞) × (0, 1), 

∂tN(t, x) + N(t, x)Sd = Λ(t, x)∂xN(t, x) + ĝ1(t, x), (5.8a) 

N1(t, 0) =  ̂g2(t)
�, (5.8b) 

N2(t, 1) = q1(t)N1(t, 1) + ĝ3(t)
�, (5.8c) 

and 

lw(t, x) = N(t, x)ld(t). (5.9) 

Therein, N1 (resp. N2) is the first row (resp, the second row) of N. By adding an artificial initial conditions 
N(0, x) = N0(x) and using the change of coordinate N̂(t, x) = N(t, x)etSd , one can prove that there exists
a piecewise continuous solution N to (5.8). 

The structure of the target system (5.7b)–(5.7d) directly implies that ε(t, ·) = 0  for  t ≥ t0 + T̃unif(Λ), 
where ˜ Tunif(Λ) is defined by

T̃unif(Λ) = sup 
t≥0 

[sout 
2 (sout 

1 (t , 0), 1) − t]. (5.10)

It follows from (5.9) that the observer gain function lw is uniquely determined by ld. I n the next step, we
extend the observer (5.4) to achieve a finite-time estimate for states vd and w. To this end, let us notice 
that the function derived from the measurement and the observers 

yd(t) := ym(t) −  ̂w2(t, 0) + N2(t, 0)v̂d(t) (5.11) 

satisfies 

yd(t) = N2(t, 0)vd(t), ∀t ≥ t0 + T̃unif(Λ). (5.12) 

Indeed, it follows from ε(t, ·) = 0 for t ≥ t0+T̃unif(Λ) that ew,2(t, 0) = N2(t, 0)ed( t) for t ≥ t0+T̃unif(Λ).
By ed = vd − v̂d and ew = w − ŵ, we obtain that (5.12) holds. By using yd, we consider the following
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REGULATION FOR HYPERBOLIC SYSTEMS 13

finite-time disturbance observer, for (t, x) in D(t0), 

˙̂μd(t) = Sdμ̂d(t) + lμ(t)(yd(t) − N2(t, 0)μ̂d(t)), (5.13a) 

˙̂vd(t) = Sdv̂d(t) + ld(t)(ym(t) −  ̂w2(t , 0)), (5.13b) 

∂tŵ(t, x) = Λ(t, x)∂xŵ(t, x) + ĝ1(t, x)v̂d(t) + lw(t, x)(ym(t) −  ̂w2 (t, 0)), (5.13c) 

ŵ1(t, 0) = q0(t)ym(t) + ĝ2(t)
�v̂d(t), (5.13d) 

ŵ2(t, 1) = q1(t)ŵ1(t, 1) + u(t) + ĝ3(t)v̂d(t ), (5.13e) 

μ̂d(t0) =  ̂μ0 
d, v̂d(t0) =  ̂v0 

d, ŵ(t0, x) =  ̂w0(x ), (5.13f)

with the additional initial condition ˆ μ0
d. Therein, yd is defined by (5.11) and the observer gain function 

lμ is considered. By introducing the additional error eμ = vd −  ̂μd and noticing ε(t, ·) = 0 for t ≥
t0 + T̃unif(Λ) and (5.12), we obtain that the error dynamics of observers μ̂d and v̂d is given by , for
t ≥ t0 + T̃unif(Λ),

ėμ(t) = (Sd − lμ(t)N2(t, 0))eμ(t) , (5.14a)

ėd(t) = (Sd − ld(t)N2(t, 0))ed(t ). (5.14b)

Let us use (V(t), U(t)) to represent the finite-dimensional linear time-varying control system 

ν̇(t) = U(t)ν(t), νy(t) = V(t)ν(t), 

where ν(t) in Rn is the state and νy(t) in R is the measurement. In order to derive a constructive way 
to compute suitable gain functions ld and lμ, we assume that the system (N2(t, 0), Sd) is uniformly
observable in the following sense (see Menold et al. (2003)). 

DEFINITION 2. The system (V(t), U(t)) is called uniformly observable if the observability matrix 

QV ,U(t) = 

⎡ 

⎢⎢⎢⎣ 

V(t) 
LUV(t) 

... 
Ln−1 

U V (t) 

⎤ 

⎥ ⎥⎥⎦ 

has rank n for all times t, where the differential operator LU is def ined as LUV(t) := V̇(t) + V(t)U(t).

While verifying the rank condition at a given time instant t is straightforward, ensuring its validity 
for all t proves considerably more challenging in practical applications. A possible approach is to
verify this condition at all discrete time grid points, as implemented in Section 6. By the results
in Bestle & Zeitz (1983); Menold et al. (2003), since (N2(t, 0), Sd) is uniformly observable, there 
exists a transformation Td,N(t) that converts the system (N2(t, 0), Sd) into the observer canonical form.
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14 Y. BAI ET AL.

The inverse transformation matrix Td,N(t)−1 can be determined in columns 

Td,N(t)−1 = [qd,N(t), L̃ qd,N(t), .  .  . , L̃ nd−1qd,N(t)] 

with the differential operator L̃ qd,N(t) =  −q̇d,N(t) + Sdqd,N(t), where qd,N(t) is defined by the last 
column of the inv erse observability matrix

qd,N(t) = QN2(·,0),Sd (t)
−1[0, .  .  .  , 0, 1]�.

Denote c̄ = [0, . . . , 0, 1]. By applying the transformation Td,N(t) to the error system (5.14), namely 
ẽμ(t) = Td,N(t)eμ(t) and ẽd(t) = Td,N(t)ed(t), we obtain that, for t ≥ t0 + T̃unif(Λ), 

˙̃eμ(t) = (End − (ad,N(t) + Td,N(t)lμ(t))c̄)ẽμ(t), (5.15a) 

˙̃ed(t) = (End − (ad,N(t) + Td,N(t)ld(t))c̄)ẽd( t), (5.15b)

where

End = 

⎡ 

⎢⎢⎢⎢⎣ 

0 .  .  .  .  .  .  0 

1 
. . . 

... 
. . . . . . 

... 
0 .  .  .  1  0  

⎤ 

⎥ ⎥⎥⎥⎦ , ad,N(t) = −Td,N(t)L̃ nd qd,N(t).

Since (c̄, End
) is observable, by Proposition 3, there exist l̃d and l̃μ such that the matrix Fd := bdiag(En − 

l̃μc̄, En − l̃dc̄) is Hurwitz and for almost all Dd > 0, det
[
Bnd eFdDd Bnd

] �= 0. Moreo ver, the finite time
observer v̂+

d is given by

v̂+ 
d (t) = Td,N(t)−1 [

Idnd 0
] [

Bnd eFdDd Bnd

]−1 
[z(t) − eFdDd z (t − Dd)], (5.16)

where

z(t) =
[

Td,N(t)μ̂d(t) 
Td,N(t)v̂d(t) 

]
(5.17)

with

lμ(t) = Td,N(t)−1(l̃μ − ad,N(t)), ld(t) = Td,N(t)−1(l̃d − a d,N(t)). (5.18)

Summarizing the results above, for the finite-time disturbance observer, we have the following result.

THEOREM 4. Let Dd > 0  be  fixed.  Let T̃unif(Λ) be given by (5.10). Let N is the solution to (5.8). Assume 
that (N2(t, 0), Sd) is uniformly observable. There exist l̃d and l̃μ such that the finite time disturbance
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REGULATION FOR HYPERBOLIC SYSTEMS 15

observer v̂+ 
d is given by (5.16)–(5.18), and the finite time state observer ŵ+ is given by

ŵ+(t, x) =  ̂w(t, x) + N(t, x)(v̂+ 
d (t) − v̂d (t)). (5.19)

In (5.16), (5.17) and (5.19), (μ̂d, v̂d, ŵ) is the solution to (5.13) with lw given by (5.9), lμ and ld gi ven

by (5.18), and μ̂d(t) =  ̂μ0 
d and v̂d(t) =  ̂v0 

d for t in [t0 − Dd, t0]. More precisely, for any t0 ≥ 0, v0 
d, v̂0 

d 
and μ̂0 

d in Rnd , and piecewise continuous w0 and ŵ0,  we  hav  e v̂+
d (t) = vd(t) and ŵ+(t, ·) = w(t, ·) for

t ≥ t0 + T̃unif(Λ) + Dd.

Proof. Since the error dynamics of the observers μ̂d and v̂d is given by (5.14)  for  t ≥ t0 + T̃unif(Λ). 
Then by the discussion above and the results in Menold et al. (2003), we have v̂+ 

d (t) = vd(t) for t ≥ 
t0 + T̃unif(Λ) + Dd. 

Then let us prove ŵ+ achieve the finite-time estimate for w. The structure of the error system (5.7b)– 
(5.7d) directly implies that εw(t, ·) = 0  for  t ≥ t0 + T̃unif(Λ). Then we have, for t ≥ t0 + T̃unif(Λ) and x 
in [0, 1], 

w(t, x) =  ̂w(t, x) + N(t, x)(vd(t) − v̂d(t)), 

and therefore, for t ≥ t0 + T̃unif(Λ) and x in [0, 1], 

w(t, x) −  ̂w+(t, x) = N(t, x)(vd(t) − v̂+ 
d (t)) . 

Consequently, ŵ+(t, ·) = w(t, ·) for t ≥ t0 + T̃unif(Λ) + Dd follows from v̂+
d (t) = vd(t) for t ≥ t0 +

T̃unif(Λ) + Dd. �

5.3. Finite-time output feedback r egulator

In this section, let us combine the results of Theorem 2, Proposition 3 and Theorem 4 to obtain the 
finite-time output feedback regulator.

THEOREM 5. Assume that the assumptions of Theorem 2, Proposition 3 and Theorem 4 hold. Let Tunif(Λ) 
and T̃unif(Λ) be given by (4.3) and (5.10) respectively. Let the finite-time observers v̂+

r , v̂
+ 
d and ŵ+, and 

time delays Dr and Dd be given by Proposition 3 and Theorem 4 and let v̂+ = (v̂+�
d , v̂+�

r )�. Then 
the output y of the system (2.1) achieves the uniform finite-time output regulation within settling time 
Tmin := Tunif(Λ) + max{Dr, T̃unif(Λ) + Dd} by output feedback regulator. More precisely , there exists
an output feedback regulator

u(t) = −q1(t)ŵ
+ 
1 (t, 1) + kv(t)

�v̂+ (t) (5.20)

with feedback gain function kv given by (4), such that for all t0 ≥ 0, v0 
r in Rnr , v̂0 

r in R2nr , v0 
d, v̂0 

d and μ̂0 
d in 

R
nd , and piecewise continuous w0 and ŵ0, the output tracking error ey satisfies ey = 0 for t ≥ t0 + Tmin.

Proof. It follows from Proposition 3 and Theorem 4 that v̂+
r (t) = vr(t), v̂

+ 
d (t) = vd(t) and ŵ+(t, ·) = 

w(t, ·) for t ≥ t0 + max{Dr, T̃unif(Λ) + Dd}. Then the proof is completed by Theorem 2. �
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6. Numerical simulations 

Consider the following transport equations, for t ≥ 0, 0 ≤ x ≤ 1, 

∂tw1(t, x) = −(1 + 0.5 sin(2π t))∂xw1(t, x) + (1 + 0.1 sin(0.1t) sin(0.05x))d1(t), (6.1a) 
∂tw2(t, x) = (1.5 + cos(2π t))∂xw2(t, x) + (1 + 0.1 sin(0.05t) sin(0.1x))d1 (t), (6.1b) 

w1(t, 0) = (1 + 0.5 cos(t))w2(t, 0) + (1 + 0.1 sin(0.2t))d2(t ), (6.1c) 
w2(t, 1) = w1(t, 1) + u(t) + (1 + 0.1 sin(0.3t))d3(t ), (6.1d) 
w(0, x) = w0(x), (6.1e) 

y(t) = w1(t, 1) + (1 + 0.1 sin(0.4t))d4( t), (6.1f) 
ym(t) = w2(t, 0). ( 6.1g) 

It can be checked that Assumptions 1 to 4 hold so Theorem 2 applies. The signal model is given by (2.4) 
with the matrices 

Sd =
[

0 −0.5 
0.5 0

]
, Sr =

[
0 −0.8 

0.8 0 

]
(6.2) 

and the vectors p�
1 = (1, 0), p�

2 = (0, 1), p�
3 = (−2, 0), p�

4 = (0, 3) and p�
r = (1, 0). By choosing 

vd(0)� = vr(0)� = (1, 0),  we  have  d1(t) = cos(0.5t), d2(t) = sin(0.5t), d3(t) =  −2 cos(0.5t), 
d4(t) = 3 sin(0.5t) and r(t) = cos (0.8t) for all t ≥ 0. It is noted that the reference signal observer
and the disturbance observer are independent of each other, and the reference signal observer has
already been demonstrated in the numerical example of Deutscher (2017a). Therefore, we focus only 
on the disturbance observer here. The matrix N can be solved from (5.8) explicitly. The assumptions of
Theorem 4, namely (N2(t, 0), Sd) is uniformly observable, can be checked numerically, and therefore,
Theorem 4 applies. Notice that the exit times for system (6.1)  is  sout 

1 (t, 0) = t + 1 and sout 
2 (t, 1) is the 

solution to 1.5(sout 
2 (t, 1) − t) + (sin(2πsout 

2 (t, 1)) − sin(2π t))/(2π)  = 1. After numerical calculations,
max0≤t≤10[sout

2 (t, 1)− t] ≈ 0.7944, and therefore, by applying Theorem 5, we have with (4.3) and (5.10) 
that the estimate of the settling time 

Tunif(Λ) ≈ 1.7944, T̃unif(Λ) ≈ 1.7944. (6.3) 

We use the place function in MATLAB to calculate the observer gain functions ld and lμ. Here the 
place function is based on pole placement method. Specifically, we use the place function to select 
ld (resp. lμ) such that the eigenvalues of Sd − ld(t)N2(t , 0) (resp. Sd − lμ(t)N2(t, 0)) are −1 ± i (resp.
−2 ± i) for 0 ≤ t ≤ 10. Then the observer gain function lw follows from (5.9). We choose time delay 
Dd = 1. Then the feedback control u follows from (5.16), (5.19) and (5.20). For the initial conditions, 
we choose v̂0 

d =  ̂μ0 
d = 0, w0(x) = 0, ŵ0 

1(x) =  −1.8875x and ˆ w0
2(x) = 0.1125x for 0 ≤ x ≤ 1, which

satisfy the zero-order compatibility conditions (see (Bastin & Coron, 2016, Chap. 4.5.2)).
To numerically check the finite-time output regulation, we use a 2-point upwind scheme (see (Allaire, 

2005, Chap. 2.3.1), (Vande Wouwer et al., 2014, Chap. 3)) to discrete (6.1) and the corresponding 
observer system. We select the parameters of the numerical scheme such that the Courant-Friedrichs-
Lewy (CFL) condition for the stability holds. More precisely, we set the space discretization of
Δx = 1/99 and time discretization of Δt = 10/2999.1 The time evolutions of the output y , the

1 Simulations have been performed in MATLAB. The simulation codes can be downloaded from Codes.
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FIG. 1. Tracking behavior of (6.1) with output y(t) for a reference signal r(t) = cos(0.8t). Top: time evolution of the output y(t) 
(blue solid line) and of the reference signal r(t) (red dashed line) for 0 ≤ t ≤ 10. Down: time evolution of the output tracking error 
ey(t) = y(t) − r(t) for 0 ≤ t ≤ 10.

FIG. 2. Control input u(t) for 0 ≤ t ≤ 10.

reference signal r and the tracking error ey are in Fig. 1. The control input u(t) is in Fig. 2. The time 
evolutions of the disturbance vd, the finite-time disturbance estimate v̂+ 

d and the disturbance error v̂+
d −vd

are in Figs. 3 and 4. The solutions w1(t, x) and w2(t, x) to (6.1)  are  in Figs 5 and 6 respectively. The

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article/42/3/dnaf024/8250654 by Ecole N

ationale des Ponts et C
haussÃ©

es (EN
PC

) user on 11 Septem
ber 2025



18 Y. BAI ET AL.

FIG. 3. Disturbance vd,1(t) = cos(0.5t) and the finite-time disturbance estimate v̂+ 
d,1(t) of vd,1(t). Top: time evolution of the 

disturbance vd,1(t) (red dashed line) and of the finite-time estimate v̂+ 
d,1(t) (blue solid line) for 0 ≤ t ≤ 10. Down: time evolution 

of the disturbance error v̂+ 
d,1(t) − vd,1(t) for 0 ≤ t ≤ 10.

FIG. 4. Disturbance vd,2(t) = sin(0.5t) and the finite-time disturbance estimate v̂+ 
d,2(t) of vd,2(t). Top: time evolution of the 

disturbance vd,2(t) (red dashed line) and of the finite-time estimate v̂+ 
d,2(t) (blue solid line) for 0 ≤ t ≤ 10. Down: time evolution 

of the disturbance error v̂+ 
d,2(t) − vd,2(t) for 0 ≤ t ≤ 10.

finite-time state estimate ŵ+ 
1 (t, x) and ŵ+ 

2 (t, x) are in Figs. 7 and 8 respectively. We can observe that for 
t ≥ Tunif(Λ) + T̃unif(Λ) + Dd with Tunif(Λ) and T̃unif(Λ) given by (6.3), the tracking error vanishes. 
This verifies finite-time output regulation with settling time Tunif(Λ) + T̃unif(Λ) + Dd and therefore,
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FIG. 5. Solution w1(t, x) to (6.1)  for  0 ≤ t ≤ 10 and for 0 ≤ x ≤ 1.

FIG. 6. Solution w2(t, x) to (6.1)  for  0 ≤ t ≤ 10 and for 0 ≤ x ≤ 1.

Theorem 5 is verified. Notice that there is a small fluctuation in the tracking error ey(t) for t ≥ Tunif(Λ). 
The reason lies in the truncation error of the numerical scheme which is O(Δt+Δx) (see (Allaire, 2005, 
Chap. 2.3.1)).

7. Concluding r emarks

This work addresses the finite-time output regulation for linear time-varying hyperbolic system by 
state feedback regulator and output feedback regulator. For the finite-time disturbance observer design, 
more regularities of the system parameters are needed. A natural question is whether the assumption 
that (N2(t, 0), Sd) is uniformly observable can be described by a more explicit condition, that is, the
relationship between the disturbance model and the hyperbolic system. In Deutscher (2017a),  this
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FIG. 7. Finite-time estimate ŵ+ 
1 (t, x) of w1(t, x) for 0 ≤ t ≤ 10 and for 0 ≤ x ≤ 1.

FIG. 8. Finite-time estimate ŵ+ 
2 (t, x) of w2(t, x) for 0 ≤ t ≤ 10 and for 0 ≤ x ≤ 1.

condition was explicitly expressed for time-invariant systems. However, in time-varying systems, this
is a challenging problem.

Data av ailability

The data underlying this article are available in the article and in its online supplementary material.
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