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FINITE-TIME OUTPUT REGULATION FOR LINEAR
TIME-VARYING HYPERBOLIC BALANCE LAWS\ast 

YUBO BAI\dagger , CHRISTOPHE PRIEUR\ddagger , AND ZHIQIANG WANG\S 

Abstract. This work is concerned with the output regulation problem for a nonautonomous
infinite-dimensional system. Specifically, a regulator for boundary controlled time-varying hyperbolic
systems is designed. The disturbances can act within the space domain, and affect both boundaries
and the to-be-controlled output. The to-be-controlled output comprises in-domain pointwise, distrib-
uted, and boundary outputs. The output regulation problem is solved in finite time. The regulator
design is based on the solvability of the regulator equations. Due to the time-varying setting of the
system and the generality of the to-be-controlled output, solving regulator equations becomes more
challenging compared to the case of autonomous systems. A novel method is introduced to overcome
this difficulty. By considering the regulator equations as a control system, we examine the dual
system of the regulator equations and transform the solvability of the regulator equations into the
validity of an observability-like inequality. Under the conditions regarding the boundary coupling
term and the to-be-controlled output, we have proven this inequality. Additionally, a time-varying
setting also brings an advantage to the problem. Since the regulator equations are time-dependent,
their solvability does not depend on the eigenmodes of the signal model. On the contrary, in the
case of autonomous systems, its solvability depends on the relationship between the plant transfer
behavior and the eigenmodes of the signal model.

Key words. hyperbolic systems, nonautonomous systems, output regulation
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1. Introduction. Control of partial differential equations (PDEs) has garnered
significant attention due to their mathematical complexity and applications in various
other fields such as engineering and physics. One significant class of PDE systems is
hyperbolic systems, which arise in many application scenarios such as open channels,
gas flow pipelines, or road traffic flow models. The boundary stabilization of these
hyperbolic systems has been considered in the literature for decades; see, for instance,
[6]. Therein, the exponential stability of hyperbolic systems is studied. More recently,
finite-time stabilization of hyperbolic systems has also received much attention. One
can refer to [14, 15] for finite-time stabilization of homogeneous linear and quasilinear
hyperbolic systems and to [12] for finite-time stabilization of linear time-varying hy-
perbolic systems. In [12], a time-dependent backstepping method was used to design
the state feedback control.
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2428 YUBO BAI, CHRISTOPHE PRIEUR, AND ZHIQIANG WANG

In this paper, we investigate the output regulation problem of the hyperbolic
systems. For the output regulation problems, unlike the stabilization problems, the
objective is to design feedback control such that the output of the system tracks a
given reference and rejects the disturbances. There has been a very fruitful literature
on the output regulation of the hyperbolic system. In [1, 2], boundary disturbance
rejection for linear 2\times 2 hyperbolic systems was considered by using the backstepping
approach. Concerning robust output regulation, [16] used the backstepping method
to design a robust state feedback regulator for boundary controlled linear 2\times 2 hy-
perbolic systems. Therein, the output to be controlled is assumed to be available for
measurement. Therefore, the regulator design is based on the internal model principle.
Later on, [19] generalized this work into general n\times n linear heterodirectional hyper-
bolic systems, where the so-called p-copy internal model principle has to be fulfilled in
order to achieve the robust output regulation. In addition to the previous references,
we would also like to mention some works on the output regulation of other types of
infinite-dimensional systems, including [31] for cascaded network of hyperbolic sys-
tems, [23, 27] for the heat equation, [4] for the Korteweg--de Vries equation, [22] for
the beam equation, [28] for thermoelastic systems, and [32] for infinite-dimensional
nonlinear systems.

Concerning the finite-time output regulation of hyperbolic systems, which is the
focus of this article, the first result was obtained in [17], where the backstepping
method was used to design the feedback regulator for boundary controlled linear 2\times 2
time-invariant hyperbolic systems. Moreover, [18, 20] achieved finite-time output
regulation for general n\times n time-invariant hyperbolic systems with different convergent
time. These three works focused on autonomous hyperbolic systems.

This paper is concerned with the finite-time output regulation problem for linear
hyperbolic systems when the coupling coefficients of the system depend on both time
and space variables. Therein, the disturbances can act within the domain, affecting
both boundaries and the output to be controlled. The output to be controlled com-
prises in-domain pointwise, distributed, and boundary outputs. In this work, we focus
on the design of the feedback regulator, assuming that the system states, reference
signal states, and disturbance states are known. Using the results from [12], we trans-
form the design of the feedback regulator into the solvability of regulator equations.

Compared to the literature mentioned above, in particular [17], this paper con-
siders nonautonomous hyperbolic systems, which introduces new challenges to the
solvability of regulator equations. As mentioned in [17], the regulator equations of
time-independent hyperbolic systems can be expressed as ordinary differential equa-
tions (ODEs) and can be explicitly solved. The solvability condition can be char-
acterized as the relationship between the signal model and the transfer behavior of
the system. However, under the time-varying setting, the regulator equations are
PDEs rather than ODEs. Due to the time-varying setting and the generality of the
to-be-controlled output, directly solving the regulator equations becomes difficult.
We applied a novel approach to address this challenge. We consider the regulator
equations as a control system. Similarly to dealing with controllability problems, we
examine the dual system of the regulator equations. Then the solvability of the reg-
ulator equations is transformed into the validity of an observability-like inequality,
and Lyapunov-like functions are used to prove this observability-like inequality. We
characterize the solvability of the regulator equations through the solvability of an
operator equation, similarly to how [13] represents null-controllability via an operator
equation. In handling the operator equation, we employ a dual approach to ana-
lyze the observability of the dual system, whereas [13] utilizes the Fredholm theory.
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REGULATION FOR TIME-VARYING BALANCE LAWS 2429

The Lyapunov-like functions share weights similar to those used in (1.29) of [15],
where a more general setting is considered. The weights have been previously pro-
posed in [13]. These weights are crucial to establishing the well-posedness of the
broad solutions where the boundary conditions have the form of (2.4) (see the proof
of Lemma 3.2 of [13]). These weights are reused in the time-varying setting; see [12].
Through this method, we can only obtain feedback gain function with L2 regularity
over a finite-time domain, which restricts us to solving the output regulation prob-
lem only within a finite-time domain and considering only broad solution (with weak
regularity) to the system.

In addition, due to our approach, we need assumptions on the dimensions of the
system and the to-be-controlled output, namely, the number of equations with nega-
tive speeds (i.e., dimension of the input) is not less than the number of equations with
positive speeds, which is not less than the dimension of the to-be-controlled output.
In the meantime, the time-varying setting also brings the following advantage: the
solvability of the regulator equations no longer depends on the relationship between
the plant transfer behavior and the eigenmodes of the signal model. In other words,
our approach relaxes the assumptions of [17, 18, 20]. Due to the discontinuity in
spatial variables of the dual system of the regulator equations, it is necessary to apply
specific techniques for the well-posedness. Inspired by the proof in [12, 13, 15], this is
done in Appendix A. The proof of the well-posedness involves essentially the weight
norms \| \cdot \| \scrB 1

and \| \cdot \| \scrB 2
, which have been proposed in [13] and are considered in [15]

as well. The proof of the well-posedness is based on the technique in [13, 15], but still
needs to be precisely proven, as done in this paper.

The remaining part of this paper is organized as follows. In section 2, we introduce
the considered output regulation problem. Some preliminaries needed in the paper is
given in section 3. Then section 4 presents the main results of this paper, namely, the
design of the finite-time regulator. The well-posedness results for the broad solution
and the C1 solution are provided in Appendices A and B, respectively.

Throughout the paper, we use the following notation. For a domain \Omega in \BbbR n, a Ba-
nach space X, and any nonnegative integer m, let Cm

U (\Omega ;X) denote the vector space
consisting of all functions f : \Omega \rightarrow X which, together with all their partial derivatives
D\alpha f of orders | \alpha | \leq m, are bounded and uniformly continuous on \Omega . For some con-
stants T > 0 and 0\leq t0 < T , we define the domain \scrD (t0) = \{ (t, x)| t0 < t < T, 0< x<
1\} , and we define the function space \scrB (t0) =C0([t0, T ];L

2(0,1)) \cap C0([0,1];L2(t0, T )).
Let l belong to \BbbN + and let xi, i = 0,1, . . . , l, be some points in [0,1] satisfying
0 = x0 < x1 < . . . < xl = 1. We define the domain \scrD l(t0) = \{ (t, x)| t0 < t <
T, x \in \cup l

i=1(xi - 1, xi)\} and define the function space \scrB l(t0) = C0([t0, T ];L
2(0,1)) \cap 

C0
U (\cup l

i=1(xi - 1, xi);L
2(t0, T )). For a vector \nu and a matrix A, denote by \| \nu \| the

Euclidean norm and by \| A\| the matrix norm of A associated to the Euclidean norm.
For symmetric matrices P and Q, P > 0 (P \geq 0) means that P is positive (non-
negative) definite, and P > Q (P \geq Q) means P  - Q > 0 (P  - Q \geq 0). Denote by
Idn the n\times n identity matrix. Denote by diag(A1, . . . ,An) the block diagonal matrix
with matrices A1, . . . ,An on the diagonal, where Ai are square matrices of potentially
different sizes, and all off-diagonal blocks are zero matrices of appropriate dimensions.

2. Problem statement. In this paper, combining the systems from [12, 20], we
consider the following linear time-varying n\times n hyperbolic system: for (t, x) in \scrD (t0),

\partial tw(t, x) + \Lambda (t, x)\partial xw(t, x) =A(t, x)w(t, x) + g1(t, x)d(t),(2.1a)

w+(t,0) =Q(t)w - (t,0) + g2(t)d(t),(2.1b)
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2430 YUBO BAI, CHRISTOPHE PRIEUR, AND ZHIQIANG WANG

w - (t,1) = u(t) + g3(t)d(t),(2.1c)

w(t0, x) =w0(x),(2.1d)

y(t) = \scrC t[w(t, \cdot )] + g4(t)d(t).(2.1e)

In (2.1), w :\scrD (t0)\rightarrow \BbbR n is the state, w0 in L2(0,1)n is the initial data at time t0, u(t)
in \BbbR m is the control input, d(t) in \BbbR h is the disturbance, and y(t) in \BbbR q is the output
to be controlled. The matrix A = (aij)1\leq i,j\leq n couples the equations of the system
inside the domain, the matrix Q couples the equations of the system on the boundary
x= 0, and the matrices gi, i= 1, . . . ,4, are disturbance input locations. Let us make
the following assumptions on all coefficients involved in (2.1).

Assumption 2.1. The matrix \Lambda is diagonal, namely,

\Lambda (t, x) = diag(\lambda 1(t, x), . . . , \lambda n(t, x))

for every (t, x) in [0,\infty )\times [0,1].

Assumption 2.2. Assume that n \geq 2. Denote by m in \{ 1, . . . , n - 1\} the number
of equations with negative speeds and by p = n - m in \{ 1, . . . , n - 1\} the number of
equations with positive speeds. We assume that there exists some \varepsilon 0 > 0 such that
for every (t, x) in [0,\infty )\times [0,1], we have

\lambda 1(t, x)< . . . < \lambda m(t, x)< - \varepsilon 0 < 0< \varepsilon 0 <\lambda m+1(t, x)< . . . < \lambda n(t, x),(2.2)

and, for every i in \{ 1, . . . , n - 1\} ,

\lambda i+1(t, x) - \lambda i(t, x)> \varepsilon 0.(2.3)

Assumption 2.2 is identical to the assumption in [12], where the finite-time stabiliza-
tion problem is considered. Condition (2.2) consists of two components: strict hy-
perbolicity and the propagation speeds being uniformly bounded away from zero. As
stated in [12], the latter is expected for finite-time stabilization, while (2.3) is mainly
technical. For more details, one can refer to the examples provided in Remarks 1.9
and 1.10 of [12]. Throughout this paper, for a vector (or vector-valued function) \nu in
\BbbR n and a matrix (or matrix-valued function) B in \BbbR n\times n, we use the notation

\nu =

\biggl( 
\nu  - 
\nu +

\biggr) 
, B =

\biggl( 
B -  - B - +

B+ - B++

\biggr) 
,

with v - in \BbbR m, v+ in \BbbR p and B -  - in \BbbR m\times m, B - + in \BbbR m\times p, B+ - in \BbbR p\times m, B++ in
\BbbR p\times p.

Assumption 2.3. The following regularities hold for \Lambda , A, and Q:

\Lambda \in C1([0,\infty )\times [0,1])n\times n, A\in C0([0,\infty )\times [0,1])n\times n, Q\in C0([0,\infty ))p\times m,

\Lambda , \partial x\Lambda ,A\in L\infty ((0,\infty )\times (0,1))n\times n, Q\in L\infty (0,\infty )p\times m.

There exist constants M0,M1,MQ > 0 such that

\| \Lambda \| L\infty ((0,\infty )\times (0,1))n\times n \leq M0, \| \partial x\Lambda \| L\infty ((0,\infty )\times (0,1))n\times n \leq M0,

\| A\| L\infty ((0,\infty )\times (0,1))n\times n \leq M1, \| Q\| L\infty (0,\infty )p\times m \leq MQ.
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REGULATION FOR TIME-VARYING BALANCE LAWS 2431

The output to be controlled, y(t) in \BbbR q, is modeled by the formal output operator
\scrC t, which satisfies the following assumption.

Assumption 2.4. Given fi = (fi - , fi+), i= 0,1, . . . , l, and c= (c - , c+) satisfying

fi - \in C0([0,\infty ))q\times m \cap L\infty (0,\infty )q\times m, fi+ \in C0([0,\infty ))q\times p \cap L\infty (0,\infty )q\times p,

c - \in C0([0,\infty );L2(0,1))q\times m \cap L\infty ((0,\infty );L2(0,1))q\times m,

c+ \in C0([0,\infty );L2(0,1))q\times p \cap L\infty ((0,\infty );L2(0,1))q\times p,

for any t\geq 0 and \~n in \BbbN \setminus \{ 0\} , the operator \scrC t is defined by

\scrC t :C0([0,1])n\times \~n \rightarrow \BbbR q\times \~n

\=\rho \mapsto \rightarrow 
l\sum 

i=0

fi(t)\=\rho (xi) +

\int 1

0

c(t, x)\=\rho (x)dx.
(2.4)

There exist constants Mf ,Mc > 0 such that

max
0\leq i\leq l

\| fi\| L\infty (0,\infty )q\times n \leq Mf , \| c\| L\infty ((0,\infty );L2(0,1))q\times n \leq Mc.

Clearly, for any 0 \leq t0 < T , \~n in \BbbN \setminus \{ 0\} , and \rho in \scrB (t0)n\times \~n, (t \mapsto \rightarrow \scrC t[\rho (t, \cdot )]) is
in L2(t0, T )

q\times \~n. It comprises in-domain pointwise, distributed, and boundary out-
puts. It encompasses the outputs used in [17, 18, 20, 31]. These output types are
widely applied in real-world problems that can be modeled by hyperbolic systems.
For boundary output, one can refer to [6, 7] for the boundary set-point control prob-
lem of the Saint-Venant equations. In [5], a heat exchanger with in-domain pointwise
output is considered. The boundary conditions having the form of (2.4) have been
considered in [13, 15].

The disturbance d(t) is in \BbbR h. The corresponding disturbance input locations
satisfy the following assumption.

Assumption 2.5. Matrix-valued functions gi, i= 1,2,3,4, are known and have the
following regularities:

g1 \in C0([0,\infty )\times [0,1])n\times h, g2 \in C0([0,\infty ))p\times h,

g3 \in C0([0,\infty ))m\times h, g4 \in C0([0,\infty ))q\times h.

The disturbance d(t) and the reference input r(t) in \BbbR q to be tracked by the
output y(t) are the solutions to the following finite-dimensional signal model: for
t > t0,

\.v(t) = S(t)v(t), v(t0) = v0,

d(t) = pd(t)v(t), r(t) = pr(t)v(t),
(2.5)

where v0 is in \BbbR nv . The coefficients of (2.5) satisfy the following assumption.

Assumption 2.6. Matrix-valued functions S, pd, and pr are known. S : [0,\infty )\rightarrow 
\BbbR nv\times nv is measurable and bounded on every finite subinterval of time, pd is in
C0([0,\infty ))h\times nv , and pr is in C0([0,\infty ))q\times nv .

By Assumption 2.6, there exists a unique continuous transition matrix \Psi : [0,\infty )2

\rightarrow \BbbR nv\times nv of S such that the solution of (2.5) is given by v(t) = \Psi (t, t0)v
0. One can

refer to [10, p. 5] for the properties of transition matrix \Psi . Denote by

ey(t) = y(t) - r(t)(2.6)

the output tracking error. Inspired by [12, 20], let us give the notion of the uniform
finite-time output regulation that we are interested in.
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2432 YUBO BAI, CHRISTOPHE PRIEUR, AND ZHIQIANG WANG

Definition 2.7. The output y of system (2.1) achieves the uniform finite-time
output regulation within settling time T0 if, for any T > T0, there exists a feedback
regulator u = \scrK T [w,v], such that for all 0 \leq t0 < T  - T0, w

0 in L2(0,1)n, and v0 in
\BbbR nv , the output tracking error ey satisfies ey = 0 a.e. in (t0 + T0, T ).

Remark 2.8.
1. Ensuring that the system output tracks a given reference signal is a classic

goal in control theory. The output regulation for linear finite-dimensional
system is well understood and is well introduced in, for example, [21, 30].

2. The uniformity means that the output regulation is achieved uniformly to the
initial time t0.

3. The output regulation is considered in any finite interval (t0, T ), and the
regulator design \scrK T is relative to T . This restriction is due to the machinery
of proof. See subsection 4.2 for details.

3. Preliminaries on characteristics. In this section, let us introduce some
known facts on the characteristics associated with system (2.1) and the entry and
exit times for the interval [xi - 1, xi], i = 1, . . . , l; see [12]. To this end, we use the
extension method introduced in [12] to extend \Lambda to a function of \BbbR 2 (still denoted
by \Lambda ) by keeping Assumptions 2.1 to 2.3. For every j = 1, . . . , n, let \chi j be the flow
associated with \lambda j , namely, for every (t, x) in \BbbR 2, the function s \mapsto \rightarrow \chi j(s; t, x) is the
solution to the ODE: for s in \BbbR ,

\partial 

\partial s
\chi j(s; t, x) = \lambda j(s,\chi j(s; t, x)), \chi j(t; t, x) = x.(3.1)

The existence and uniqueness of the solutions to the ODE (3.1) follow the classical
theory. Moreover, since \lambda j is bounded, the solution is global and has the regularity

\chi j \in C1(\BbbR 3),(3.2)

and, for every (s, t, x) in \BbbR 3, we have

\partial t\chi j(s; t, x) = - \lambda j(t, x)e
\int s
t
\partial x\lambda j(\tau ,\chi j(\tau ;t,x))d\tau , \partial x\chi j(s; t, x) = e

\int s
t
\partial x\lambda j(\tau ,\chi j(\tau ;t,x))d\tau .

(3.3)

Next we introduce the entry and exit times for the interval [xi - 1, xi], i= 1, . . . , l.
For j = 1, . . . , n, t in \BbbR , and x in [0,1], let sin,ij (t, x) and sout,ij (t, x) be the entry and
exit times of the flow \chi j(\cdot ; t, x) inside the interval [xi - 1, xi], namely, the respective
unique solutions to

\chi j(s
in,i
j (t, x); t, x) = xi, \chi j(s

out,i
j (t, x); t, x) = xi - 1 if j \in \{ 1, . . . ,m\} ,

\chi j(s
in,i
j (t, x); t, x) = xi - 1, \chi j(s

out,i
j (t, x); t, x) = xi if j \in \{ m+ 1, . . . , n\} .

(3.4)

The existence and uniqueness of sin,ij (t, x) and sout,ij (t, x) are guaranteed by (2.2) in
Assumption 2.2. From (3.2) and by the implicit function theorem, we have

sin,ij , sout,ij \in C1(\BbbR \times [0,1]), i= 1, . . . , l, j = 1, . . . , n.(3.5)

Especially, we denote the entry and exit times for the interval [0,1] as

sinj (t, x) = sin,lj (t, x), soutj (t, x) = sout,1j (t, x) if j \in \{ 1, . . . ,m\} ,
sinj (t, x) = sin,1j (t, x), soutj (t, x) = sout,lj (t, x) if j \in \{ m+ 1, . . . , n\} .

(3.6)
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REGULATION FOR TIME-VARYING BALANCE LAWS 2433

Integrating the ODE (3.1) and using (2.2), we have the following bounds for every t
in \BbbR and x in [0,1]:

t - sinj (t, x)<
1

\varepsilon 0
, soutj (t, x) - t <

1

\varepsilon 0
, j = 1, . . . , n.(3.7)

Differentiating (3.4) and using (3.3), we see that for i= 1, . . . , l,

\partial \mu s
in,i
j (t, x) = - 

\partial \mu \chi j(s
in,i
j (t, x); t, x)

\lambda j(s
in,i
j (t, x), xi)

if j \in \{ 1, . . . ,m\} ,

\partial \mu s
in,i
j (t, x) = - 

\partial \mu \chi j(s
in,i
j (t, x); t, x)

\lambda j(s
in,i
j (t, x), xi - 1)

if j \in \{ m+ 1, . . . , n\} ,
(3.8)

with \partial \mu is \partial t or \partial x.

4. Finite-time regulator. In this section, we aim to find a finite-time regulator.
Let T > 0 and 0\leq t0 <T . We consider the time-dependent regulator

u(t) = kv(t)v(t) +

\int 1

0

kw(t, x)w(t, x)dx,(4.1)

with feedback gain functions kv : (0, T ) \rightarrow \BbbR m\times nv and kw : \scrD (0) \rightarrow \BbbR m\times n to be
determined later. By applying (4.1) to system (2.1) and taking the signal model (2.5)
into account, we have the closed-loop system for (t, x) in \scrD (t0):

\.v(t) = S(t)v(t), v(t0) = v0,(4.2a)

\partial tw(t, x) + \Lambda (t, x)\partial xw(t, x) =A(t, x)w(t, x) + \~g1(t, x)v(t),(4.2b)

w+(t,0) =Q(t)w - (t,0) + \~g2(t)v(t),(4.2c)

w - (t,1) = kv(t)v(t) +

\int 1

0

kw(t, x)w(t, x)dx+ \~g3(t)v(t),(4.2d)

w(t0, x) =w0(x),(4.2e)

ey(t) = \scrC t[w(t, \cdot )] - (pr(t) - \~g4(t))v(t),(4.2f)

where \~gi = gipd, i = 1,2,3,4, and ey is defined as in (2.6). Similarly to [12], we
consider the broad solutions to (4.2b)--(4.2e). The definition of broad solution and
the well-posedness of (4.2b)--(4.2e) are given in Appendix A. We have the following
well-posedness result for (4.2b)--(4.2e).

Theorem 4.1. Let kw be in L\infty (\scrD (0))m\times n and kv be in L2(0, T )m\times nv . Under
Assumptions 2.1 to 2.3 and 2.5, for every w0 in L2(0,1)n and v in C0([t0, T ])

nv , there
exists a unique broad solution w in \scrB (t0)n to the system (4.2b)--(4.2e).

Theorem 4.1 is a corollary of Theorem A.3 in Appendix A. Let us now state the main
result of this paper.

Theorem 4.2 (finite-time regulator). Assume that Assumptions 2.1 to 2.6 hold
and assume that there exist positive constants \varepsilon Q and \varepsilon f such that for all t\geq 0,

Q(t)Q(t)\top > \varepsilon QIdp(4.3)

and

fl+(t)fl+(t)
\top > \varepsilon f Idq.(4.4)
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2434 YUBO BAI, CHRISTOPHE PRIEUR, AND ZHIQIANG WANG

Let the settling time Tunif(\Lambda ) be defined by

Tunif(\Lambda ) = sup
t\geq 0

[soutm+1(s
out
m (t,1),0) - t].(4.5)

Then the output y achieves the uniform finite-time output regulation within settling
time Tunif(\Lambda ). More precisely, for any T > Tunif(\Lambda ), there exist gain functions kw in
L\infty (\scrD (0))m\times n and kv in L2(0, T )m\times nv such that for all 0 \leq t0 \leq T  - Tunif(\Lambda ), w0

in L2(0,1)n, and v0 in \BbbR nv , the output tracking error ey of closed-loop system (4.2)
satisfies ey = 0 a.e. in (t0 + Tunif(\Lambda ), T ).

Remark 4.3.
1. It follows from conditions (4.3) and (4.4) that the number of equations with

negative speeds m (the number of the control input), the number of equations
with positive speeds p, and the number of outputs to be controlled q should
satisfy m\geq p\geq q.

2. When considering the case of a 2\times 2 hyperbolic system with scalar output, i.e.,
m= p= q= 1, the conditions (4.3) and (4.4) are equivalent to | Q(t)| 2 \geq \varepsilon Q > 0
and | fl+(t)| 2 \geq \varepsilon f > 0 for all t \geq 0. If in addition the coefficients of the
system do not depend on time, the result of this paper does not recover
the result of [17], and vice versa. On the one hand, the example in [17,
section 6] (see also the example in item 5 of this remark) shows that the
finite-time output regulation problem can be solved when condition (4.4) is
not satisfied. On the other hand, Lemma 1 from [17] provides the sufficient
and necessary conditions for the existence of a feedback regulator with time-
invariant feedback gains. The following example illustrates that, although the
conditions of Lemma 1 from [17] are not satisfied, we can still find a feedback
regulator with a time-dependent feedback gain. Consider the following 2\times 2
system: for all (t, x) in (0,\infty )\times (0,1),

\partial tw1(t, x) - \partial xw1(t, x) = 0, \partial tw2(t, x) + \partial xw2(t, x) = 0,(4.6a)

w2(t,0) =w1(t,0), w1(t,1) = u(t), w(0, x) =w0(x),(4.6b)

y(t) =w2(t,1) - w2(t,1/2),(4.6c)

and consider the constant reference signal r(t) = v(t) \equiv v\ast for some v\ast in
\BbbR \setminus \{ 0\} . Direct calculation shows that the numeratorN(s) of the transfer func-
tion of (4.6) from u to y is N(s) = e - s  - e - s/2. The conditions of Lemma 1
from [17] are not satisfied since N(0) = 0 and 0 is the eigenvalue of the
signal model. However, conditions (4.3) and (4.4) are satisfied, which im-
plies that there exists time-dependent feedback regulator u. Indeed, by the
characteristic method, we have that for t \geq 2, y(t) = u(t  - 2)  - u(t  - 3/2).
Then u(t) = - 2tv\ast solves the finite-time output regulation problem. Roughly
speaking, the advantage of Theorem 4.2 lies in the fact that the required
conditions (4.3) and (4.4) are independent of the signal model.

3. In (4.5), soutm and soutm+1 defined in section 3 are the exit time of the charac-
teristics for the interval [0,1]. The settling time Tunif(\Lambda ) has been introduced
in [12]. The main result of [12] is used in the proof of Theorem 4.2 (see The-
orem 4.4 below). Notice that the settling time Tunif(\Lambda ) is only related to the
propagation speed \Lambda of the system. Here is an example of 2 \times 2 system to
compute the settling time: for all (t, x) in (0,\infty )\times (0,1),

\partial tw1(t, x) - (1 + e - t)\partial xw1(t, x) = 0,

\partial tw2(t, x) + (1 + 0.5 sin(2\pi t))\partial xw2(t, x) = 0.
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REGULATION FOR TIME-VARYING BALANCE LAWS 2435

Direct calculation shows \chi 1(s; t, x) = - s+ e - s + t - e - t + x and \chi 2(s; t, x) =
s - cos(2\pi s)/(4\pi ) - t+ cos(2\pi t)/(4\pi ) + x. It is clear that sout2 (t,0) = t+ 1.
Denote h(t) = sout1 (t,1)  - t. We have that h(t) solves \Phi (h(t), t) = 0, where
\Phi (h, t) = 1 - h+e - h - t - e - t. Taking the derivative of the relation \Phi (h(t), t) = 0
and using the fact that 0.5 \leq h(t) \leq 1, we have that h\prime (t) \geq 0. Thus, h is a
bounded nondecreasing function and, consequently limt\rightarrow \infty h(t) exists and is
equal to supt\geq 0 h(t). Letting t\rightarrow \infty in the relation \Phi (h(t), t) = 0, we obtain
that limt\rightarrow \infty h(t) = 1. Therefore, Tunif(\Lambda ) = 2.

4. Condition (4.3) is expected for the output regulation to be achieved. Here,
we provide an example to illustrate that when condition (4.3) is not satisfied,
the output regulation problem may have no solution. Let us consider the
following system: for all (t, x) in (0,\infty )\times (0,1),

\partial tw(t, x) + \Lambda \partial xw(t, x) = 0,

w+(t,0) =Qw - (t,0), w - (t,1) = u(t),

w(0, x) =w0(x), y(t) =w+(t,1),

where \Lambda = diag( - 2, - 1,1,2), w - = (w1,w2)
\top , w+ = (w3,w4)

\top , and Q= ( 1 2
2 4 ).

Clearly, condition (4.3) is not satisfied. By the characteristic method, for
t > 2, the explicit representation of the output is

y(t) =

\biggl( 
w3(t,1)
w4(t,1)

\biggr) 
=

\biggl( 
u1(t - 3/2) + 2u2(t - 2)
2u1(t - 1) + 4u2(t - 3/2)

\biggr) 
.

We observe that for t > 2, w4(t - 1/2,1) = 2w3(t,1). Then, for the constant
signal r(t) = (1,0)\top , the finite-time output regulation cannot be achieved. In
the absence of a zero-order term, namely, when A= 0, as in this example, [33]
proves null-controllability without any assumptions about the structure of Q.
For the general case (A is not necessarily zero), it is shown in [3, 11] that
one can reach the null-controllability at time Tunif(\Lambda ) without any assump-
tion about the structure of Q (indeed, when considering the time-independent
case, Tunif(\Lambda ) is the same time as in [3, 11]). When Q is required to possess
certain specific structures that differ from condition (4.3), [13] proves that
null-controllability can be achieved within a smaller control time. In [24], the
minimal control time for exact controllability is established when Q is full
row rank. For 2\times 2 hyperbolic systems with Q= 0, [25] investigates the min-
imal null-controllability time. Furthermore, [26] explicitly characterizes the
bounds of the minimal null-controllability time for n\times n hyperbolic systems
with respect to the zero-order term A. These facts, to some extent, reflect
the differences between the null-controllability and the output regulation.

5. Condition (4.4) is mainly technical. This assumption is needed because
fl+(t)fl+(t)

\top > 0 is necessary for the matrix \scrP (t) to be positive definite (see
in particular (4.28) below). However, this condition is not necessary for the
output of some systems to achieve output regulation. Indeed, consider system
(4.6a) and (4.6b) again, but with a different output y(t) =w2(t,1/2). By the
characteristic method, we have that for t > 3/2, y(t) =w2(t,1/2) = u(t - 3/2).
Then for any given reference signal r, the control u(t) = r(t + 3/2) enables
the finite-time output regulation to be achieved.

Before providing the proof of Theorem 4.2, let us explain its difficulty and how
we overcome these difficulties. In Theorem 4.1, we consider the broad solution to
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2436 YUBO BAI, CHRISTOPHE PRIEUR, AND ZHIQIANG WANG

system (4.2b)--(4.2e), which has only weak regularity \scrB (t0)n =C0([t0, T ];L
2(0,1)n)\cap 

C0([0,1];L2(t0, T )
n), and we only consider system (4.2b)--(4.2e) over finite-time do-

main (t0, T ) rather than infinite-time domain (t0,\infty ). The reason for these restrictions
lies in the time-varying nature of the system, which introduces new challenges in the
output regulation problem. In detail, due to the time-varying setting, the regulator
equations (see (4.9) below) are PDEs rather than ODEs as in [17]. In [17], the hyper-
bolic system to be considered is time independent, and thus the solvability condition
for the regulator equations can be characterized as the relationship between the sig-
nal model and the transfer behavior of the system. Furthermore, the solution to the
regulator equations is independent of time, allowing for the design of regulator over
infinite-time domain (0,\infty ) and the consideration of system over infinite-time domain
(0,\infty ) as well. However, when considering time-varying systems and accounting for
boundary, pointwise as well as distributed outputs (2.4), directly finding solution to
the regulator equations becomes challenging. To overcome new difficulties, we ex-
amine the dual system of the regulator equations, thereby transforming the issue of
solvability of regulator equations over any finite-time domain (0, T ) into proving an
observability-like inequality (as given in (4.22) below) regarding the solution to the
dual system. Then we use Lyapunov-like functions (defined in (4.23) and (4.24) be-
low) to prove observability-like inequality. Through this method, we can only find
gain function kv in L2(0, T )m\times nv , rather than in more regular function spaces such as
C0([0, T ])m\times nv . Furthermore, we cannot extend the gain function kv to the infinite-
time domain (0,\infty ). Due to the regularity of gain function kv, we can only consider
system (4.2b)--(4.2e) over finite-time domain (t0, T ) and consider the broad solution
w in \scrB (t0)n to system (4.2b)--(4.2e).

In Theorem 4.2, we provide sufficient conditions (4.3) and (4.4) for the solvability
of the regulator equations. In detail, (4.3) implies that the boundary coupling coeffi-
cient matrix Q is uniformly row full rank, and (4.4) implies that the to-be-controlled
output should include fl+(t)w+(t,1) and fl+ is uniformly row full rank. These two
conditions ensure that any q-dimensional reference signal can be tracked. We use
these conditions in proving the observability-like inequality. These conditions are not
required for the output regulation problem in time-independent hyperbolic systems,
as mentioned in [17, 18, 20]. They arise from time-varying settings and the machinery
of the proof.

Besides, a time-varying setting also brings an advantage to the output regulation
problem. Since the regulator equations are time dependent, its solvability no longer
relies on the relationship between the signal model and the transfer behavior of the
system. An output regulation problem can be achieved for any signal model (2.5).

We prove Theorem 4.2 in two subsections. In subsection 4.1, we remove the de-
pendency of v in (4.2b)--(4.2d) and (4.2f) and provide the feedback gain kw by using
the result in [12]. In subsection 4.2, we prove that the regulator equations admit a so-
lution under the conditions (4.3) and (4.4) and therefore provide the feedback gain kv.

4.1. Removal of the dependency of \bfitv . Let t0 be in [0, T - Tunif(\Lambda )). Inspired
by [17], we introduce a bounded invertible change of coordinates to eliminate the
dependency of v in (4.2b)--(4.2d) and (4.2f),

z(t, x) =w(t, x) - \Pi (t, x)v(t),(4.7)

with \Pi = [\Pi ij ] : \scrD (0) \rightarrow \BbbR n\times nv . Then (4.2) takes the following form: for (t, x) in
\scrD (t0),
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REGULATION FOR TIME-VARYING BALANCE LAWS 2437

\.v(t) = S(t)v(t), v(t0) = v0,(4.8a)

\partial tz(t, x) + \Lambda (t, x)\partial xz(t, x) =A(t, x)z(t, x),(4.8b)

z+(t,0) =Q(t)z - (t,0),(4.8c)

z - (t,1) =

\int 1

0

kw(t, x)z(t, x)dx,(4.8d)

z(t0, x) =w0(x) - \Pi (t0, x)v
0,(4.8e)

ey(t) = \scrC t[z(t, \cdot )];(4.8f)

if \Pi is the solution to the regulator equations: for (t, x) in \scrD (0),

\partial t\Pi (t, x) + \Lambda (t, x)\partial x\Pi (t, x) =A(t, x)\Pi (t, x) - \Pi (t, x)S(t) + \~g1(t, x),(4.9a)

\Pi +(t,0) =Q(t)\Pi  - (t,0) + \~g2(t),(4.9b)

\scrC t[\Pi (t, \cdot )] = (pr(t) - \~g4(t)),(4.9c)

and

kv(t) =\Pi  - (t,1) - \~g3(t) - 
\int 1

0

kw(t, x)\Pi (t, x)dx,(4.10)

where \Pi (t, x) = (\Pi \top 
 - ,\Pi 

\top 
+)

\top (t, x) with \Pi  - (t, x) in \BbbR m\times nv and \Pi +(t, x) in \BbbR p\times nv . The
finite-time stability of z-subsystem (4.8b)--(4.8e) follows from the following theorem,
which is the main result of [12].

Theorem 4.4. Under Assumptions 2.1 to 2.3, there exists a gain function kw
in L\infty (\scrD (0))m\times n such that for any w0 in L2(0,1)n, \Pi (t0, \cdot ) in L2(0,1)n\times nv , and v0

in \BbbR nv , system (4.8b) and (4.8c) with feedback law (4.8d) is finite-time stable with
settling time Tunif(\Lambda ) defined by (4.5).

Remark 4.5. In [12], kw can be defined for infinite-time interval (0,\infty ). Thus, kw
does not depend on T .

If there exists a solution \Pi in \scrB (0)n\times nv to the regulator equations (4.9), we can
define the feedback gain function kv in L2(0, T )m\times nv by (4.10), and Theorem 4.2 is
deduced from Theorem 4.4. The remaining thing is to find a solution to the regulator
equations (4.9). This is the goal of the next subsection.

4.2. Regulator equations. In this section, we prove that under the assump-
tions of Theorem 4.2, the regulator equations (4.9) admit a solution. Postmultiply
(4.9) by \Psi (t,0), the transition matrix of S, and denote \^\Pi (t, x) = \Pi (t, x)\Psi (t,0). This
yields the following equations: for (t, x) in \scrD (0),

\partial t \^\Pi (t, x) + \Lambda (t, x)\partial x \^\Pi (t, x) =A(t, x)\^\Pi (t, x) + \^g1(t, x),(4.11a)

\^\Pi +(t,0) =Q(t)\^\Pi  - (t,0) + \^g2(t),(4.11b)

\scrC t[ \^\Pi (t, \cdot )] = \^g4(t),(4.11c)

where \^g1(t, x) = \~g1(t, x)\Psi (t,0), \^g2(t) = \~g2(t)\Psi (t,0), and \^g4(t) = (pr(t) - \~g4(t))\Psi (t,0).

Remark 4.6. The solvability of (4.11) does not depend either on the signal matrix
S or on the initial condition v0. This property is essentially different from the time-
independent case, where an ODE depending on S needs to be solved for \Pi (see [17]).

The next lemma reduces the solvability of regulator equations (4.11) to the solv-
ability of a homogeneous equation.
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Lemma 4.7. The regulator equations (4.11) have a solution \^\Pi in \scrB (0)n\times nv if, for
any F in L2(0, T )q, the homogeneous equations, for (t, x) in \scrD (0),

\partial t\phi (t, x) + \Lambda (t, x)\partial x\phi (t, x) =A(t, x)\phi (t, x),(4.12a)

\phi +(t,0) =Q(t)\phi  - (t,0),(4.12b)

\scrC t[\phi (t, \cdot )] = F (t),(4.12c)

admit a solution \phi in \scrB (0)n.
Proof. For i = 1, . . . , nv, denote by \Pi i(t, x) in \BbbR n the broad solution to the fol-

lowing equations: for (t, x) in \scrD (0),

\partial t\Pi 
i(t, x) + \Lambda (t, x)\partial x\Pi 

i(t, x) =A(t, x)\Pi i(t, x) + \^gi1(t, x),(4.13a)

\Pi i
+(t,0) =Q(t)\Pi i

 - (t,0) + \^gi2(t),(4.13b)

\Pi i
 - (t,1) = 0,(4.13c)

\Pi i(0, x) = 0,(4.13d)

where \^gi1 and \^gi2 are the ith columns of \^g1 and \^g2, respectively. Due to the well-
posedness results (see Theorem A.3), there exists a unique broad solution \Pi i in \scrB (0)n
to system (4.13). For i = 1, . . . , nv, denote by \phi i the solution to (4.12) with F (t) =
\^gi4(t)  - \scrC t[\Pi i(t, \cdot )], where \^gi4 is the ith column of \^g4. Thus, \^\Pi = (\Pi 1 + \phi 1,\Pi 2 +
\phi 2, . . . ,\Pi nv + \phi nv ) is the solution to (4.11).

Now we prove that under the assumptions of Theorem 4.2, the homogeneous
equations (4.12) admit a solution. By the well-posedness results (see Theorem A.3),
(4.12a) and (4.12b) together with the initial and boundary conditions

\phi  - (t,1) = u0(t), \phi (0, x) = \phi 0(x)(4.14)

have a unique broad solution \phi in \scrB (0)n, where u0 belongs to L2(0, T )m and \phi 0 belongs
to L2(0,1)n. Then define the map \scrF T as follows:

\scrF T : L2(0,1)n \times L2(0, T )m \rightarrow L2(0, T )q

(\phi 0, u0) \mapsto \rightarrow (t \mapsto \rightarrow \scrC t[\phi (t, \cdot )]),
(4.15)

where \phi in \scrB (0)n is the broad solution to (4.14), (4.12a), and (4.12b). It follows that
\scrF T is a linear continuous map from L2(0,1)n \times L2(0, T )m into L2(0, T )q.

We get that the homogeneous regulator equations (4.12) have a solution if the
map \scrF T is onto. In order to decide whether \scrF T is onto or not, we use the following
classical result of functional analysis (see Theorem 4.13 of [29, p. 100]).

Proposition 4.8. Let H1 and H2 be two Hilbert spaces. Let \scrF be a linear
continuous map from H1 into H2. Then \scrF is onto if and only if there exists c > 0
such that

\| \scrF \ast (\rho )\| H1 \geq c\| \rho \| H2 \forall \rho \in H2,(4.16)

where \scrF \ast is the adjoint operator of \scrF .

In order to apply this proposition, we make explicit \scrF \ast 
T in the following lemma.
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REGULATION FOR TIME-VARYING BALANCE LAWS 2439

Lemma 4.9. Let \omega be in L2(0, T )q. Let \theta in \scrB l(0)
n be the unique broad solution to

the following equations (see Theorem A.3 for the well-posedness): for (t, x) in \scrD l(0),

\partial t\theta (t, x) + \partial x(\Lambda (t, x)\theta (t, x)) = - A(t, x)\top \theta (t, x) - c(t, x)\top \omega (t),

(4.17a)

\theta  - (t, x
+
i ) = \theta  - (t, x

 - 
i ) - \Lambda  -  - (t, xi)

 - 1fi - (t)
\top \omega (t), i= 1, . . . , l - 1,

(4.17b)

\theta  - (t,0) = - \Lambda  -  - (t,0)
 - 1[Q(t)\top \Lambda ++(t,0)\theta +(t,0) + (f0+(t)Q(t) + f0 - (t))

\top \omega (t)],

(4.17c)

\theta +(t, x
 - 
i ) = \theta +(t, x

+
i ) + \Lambda ++(t, xi)

 - 1fi+(t)
\top \omega (t), i= 1, . . . , l - 1,

(4.17d)

\theta +(t,1) =\Lambda ++(t,1)
 - 1fl+(t)

\top \omega (t),

(4.17e)

\theta (T,x) = 0.
(4.17f)

Then

\scrF \ast 
T (\omega ) = (\theta (0, \cdot ), f\top 

l - \omega  - \Lambda  -  - (\cdot ,1)\theta  - (\cdot ,1)).(4.18)

Proof. Let us first assume that (\Lambda ,A,Q, c,\omega ) is in C2(\scrD (0))n\times n\times C1(\scrD (0))n\times n\times 
C1[0, T ]p\times m \times C1

U (\scrD l(0))
q\times n \times C1[0, T ]q, fi is in C1[0, T ]q\times n, i = 0,1, . . . , l, and the

compatibility conditions

\omega (T ) = 0, \omega \prime (T ) = 0(4.19)

hold. Let \phi 0 in C1[0,1]n and u0 in C1[0, T ]m be such that

\phi 0
+(0) =Q(0)\phi 0

 - (0), \phi 0
 - (1) = u0(0),

(u0)\prime (0) = - \Lambda  -  - (0,1)(\phi 
0
 - )

\prime (1) +A - +(0,1)\phi 
0
+(1) +A -  - (0,1)\phi 

0
 - (1),

 - \Lambda ++(0,0)(\phi 
0
+)

\prime (0) +A++(0,0)\phi 
0
+(0) +A+ - (0,0)\phi 

0
 - (0)

=Q(t)[ - \Lambda  -  - (0,0)(\phi 
0
 - )

\prime (0)+A - +(0,0)\phi 
0
+(0)+A -  - (0,0)\phi 

0
 - (0)]+Q\prime (t)\phi 0

 - (0).

(4.20)

Let \phi in C1(\scrD (0))n be the C1 solution to (4.14), (4.12a), and (4.12b) (see Theorem
B.2). Considering the boundary condition (4.12b) and the definition of the output in
(2.4), we have that

\scrF T (\phi 
0, u0)(t) = \scrC t[\phi (t, \cdot )] =

l\sum 
i=0

fi(t)\phi (t, xi) +

\int 1

0

c(t, x)\phi (t, x)dx

= (f0+(t)Q(t) + f0 - (t))\phi  - (t,0) +

l\sum 
i=1

fi(t)\phi (t, xi)

+

\int 1

0

c(t, x)\phi (t, x)dx.

(4.21)

Let \theta in C1
U (\scrD l(0))

n be the C1 solution to (4.17) (see Theorem B.2). Then from
(4.14), (4.17), (4.12a), and (4.12b), we obtain that, using integrations by parts,
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2440 YUBO BAI, CHRISTOPHE PRIEUR, AND ZHIQIANG WANG

0 =

l\sum 
i=1

\int T

0

\int xi

xi - 1

\theta (t, x)\top [\partial t\phi (t, x) + \Lambda (t, x)\partial x\phi (t, x) - A(t, x)\phi (t, x)]dxdt

=

l\sum 
i=1

\Biggl\{ 
 - 
\int T

0

\int xi

xi - 1

[\partial t\theta (t, x) + \partial x(\Lambda (t, x)\theta (t, x)) +A(t, x)\top \theta (t, x)]\top \phi (t, x)dxdt

+

\int xi

xi - 1

[\theta (T,x)\top \phi (T,x) - \theta (0, x)\top \phi (0, x)]dx

+

\int T

0

[\theta (t, x - 
i )

\top \Lambda (t, xi)\phi (t, xi) - \theta (t, x+
i - 1)

\top \Lambda (t, xi - 1)\phi (t, xi - 1)]dt

\Biggr\} 

=

\int T

0

\int 1

0

\omega (t)\top c(t, x)\phi (t, x)dxdt - 
\int 1

0

\theta (0, x)\top \phi 0(x)dx

+

\int T

0

\omega (t)\top 

\Biggl[ 
(f0+(t)Q(t) + f0 - (t))\phi  - (t,0) +

l\sum 
i=1

fi(t)\phi (t, xi)

\Biggr] 
dt

 - 
\int T

0

(fl - (t)
\top \omega (t) - \Lambda  -  - (t,1)\theta  - (t,1))

\top u0(t)dt.

Consequently, it follows from (4.21) that\int T

0

\omega (t)\top \scrF T (\phi 
0, u0)(t)dt=

\int T

0

\omega (t)\scrC t[\phi (t, \cdot )]dt

=

\int 1

0

\theta (0, x)\top \phi 0(x)dx+

\int T

0

(fl - (t)
\top \omega (t) - \Lambda  -  - (t,1)\theta  - (t,1))

\top u0(t)dt,

which, together with Claim B.3, concludes the proof of Lemma 4.9.

In next lemma, we prove that under the assumptions of Theorem 4.2, inequality
(4.16) holds with respect to operator (4.18).

Lemma 4.10. Let the assumptions of Theorem 4.2 hold. Let \omega belong to L2(0, T )q

and \theta in \scrB l(0)
n be the broad solution to (4.17). Then there exists a constant cT > 0

such that

\int 1

0

\| \theta (0, x)\| 2dx+

\int T

0

\| fl - (t)\top \omega (t) - \Lambda  -  - (t,1)\theta  - (t,1)\| 2dt\geq cT

\int T

0

\| \omega (t)\| 2dt.

(4.22)

Proof. Let us first assume that (\Lambda ,A,Q, c,\omega ) is in C2(\scrD (0))n\times n\times C1(\scrD (0))n\times n\times 
C1[0, T ]p\times m \times C1

U (\scrD l(0))
q\times n \times C1[0, T ]q, fi is in C1[0, T ]q\times n, i = 0,1, . . . , l, and the

compatibility conditions (4.19) hold. Let \theta in C1
U (\scrD l(0))

n be the C1 solution to (4.17).
For i= 1, . . . , l and 0\leq t\leq T , let

Vi+(t) = e - Lt

\int xi

xi - 1

e\alpha i(x - xi - 1)\| \theta +(t, x)\| 2dx,(4.23)

Vi - (t) = e - Lt

\int xi

xi - 1

e\beta i(xi - x)\| \theta  - (t, x)\| 2dx,(4.24)

with positive coefficients L, \alpha i, and \beta i to be chosen later. Denote V (t) =
\sum l

i=1(Vi+(t)+

Vi - (t)). The proof of (4.22) is based on identity V (0) = - 
\int T

0
dV
dt (t)dt, and the main

idea is as follows. First, V (0) is equivalent to
\int 1

0
\| \theta (0, x)\| 2dx. Next, we use integra-

tion by parts to express term \beta 0

\int T

0
\| fl - (t)\top \omega (t) - \Lambda  -  - (t,1)\theta  - (t,1)\| 2dt - 

\int T

0
dV
dt (t)dt
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REGULATION FOR TIME-VARYING BALANCE LAWS 2441

as a quadratic form. Finally, by applying conditions (4.3) and (4.4) and selecting
appropriate constants L, \alpha i, and \beta i, we ensure that this quadratic form is greater
than or equal to cT

\int T

0
\| \omega (t)\| 2dt. The weights of the Lyapunov-like functions (4.23)

and (4.24) are similar to those used in [12, 13, 15]. In [12, 13] the weights are crucial
to establishing the well-posedness of the broad solutions.

Let us proceed with the proof. The time derivative of Vi+(t) along the C1 solution
\theta to (4.17) is

dVi+(t)

dt
= e - Lt

\int xi

xi - 1

e\alpha i(x - xi - 1)\theta +(t, x)
\top [2\partial t\theta +(t, x) - L\theta +(t, x)]dx

= e - Lt

\int xi

xi - 1

e\alpha i(x - xi - 1)\theta +(t, x)
\top [ - L\theta +(t, x) - 2\partial x(\Lambda ++(t, x)\theta +(t, x))

 - 2A++(t, x)
\top \theta +(t, x) - 2A - +(t, x)

\top \theta  - (t, x) - 2c+(t, x)
\top \omega (t)]dx

= e - Lt

\Biggl\{ \int xi

xi - 1

e\alpha i(x - xi - 1)\theta +(t, x)
\top [ - (LIdp  - \alpha i\Lambda ++(t, x) + \partial x\Lambda ++(t, x)

+ 2A++(t, x)
\top )\theta +(t, x) - 2A - +(t, x)

\top \theta  - (t, x) - 2c+(t, x)
\top \omega (t)]dx

 - e\alpha i(xi - xi - 1)\theta +(t, x
 - 
i )

\top \Lambda ++(t, xi)\theta +(t, x
 - 
i )

+ \theta +(t, x
+
i - 1)

\top \Lambda ++(t, xi - 1)\theta +(t, x
+
i - 1)

\Biggr\} 
.

Similarly, the time derivative of Vi - (t) along the C1 solution \theta to (4.17) is

dVi - (t)

dt
= e - Lt

\Biggl\{ \int xi

xi - 1

e\beta i(xi - x)\theta  - (t, x)
\top [ - (LIdm + \beta i\Lambda  -  - (t, x) + \partial x\Lambda  -  - (t, x)

+ 2A -  - (t, x)
\top )\theta  - (t, x) - 2A+ - (t, x)\theta +(t, x) - 2c - (t, x)

\top \omega (t)]dx

 - \theta  - (t, x
 - 
i )

\top \Lambda  -  - (t, xi)\theta  - (t, x
 - 
i )

+ e\beta i(xi - xi - 1)\theta  - (t, x
+
i - 1)

\top \Lambda  -  - (t, xi - 1)\theta  - (t, x
+
i - 1)

\Biggr\} 
.

Taking boundary and jump conditions (4.17b)--(4.17e) into account, we conclude that

eLt dV (t)

dt

(4.25)

=

l\sum 
i=1

\int xi

xi - 1

[ - 2(e\alpha i(x - xi - 1)c+(t, x)\theta +(t, x) + e\beta i(xi - x)c - (t, x)\theta  - (t, x))
\top \omega (t)

 - e\alpha i(x - xi - 1)\theta +(t, x)
\top (LIdp  - \alpha i\Lambda ++(t, x) + \partial x\Lambda ++(t, x) + 2A++(t, x)

\top )\theta +(t, x)

 - e\beta i(xi - x)\theta  - (t, x)
\top (LIdm + \beta i\Lambda  -  - (t, x) + \partial x\Lambda  -  - (t, x) + 2A -  - (t, x)

\top )\theta  - (t, x)

 - 2\theta +(t, x)
\top (e\alpha i(x - xi - 1)A - +(t, x)

\top + e\beta i(xi - x)A+ - (t, x))\theta  - (t, x)]dx

 - 
l - 1\sum 
i=1

\{ (e\alpha i(xi - xi - 1)  - 1)\theta +(t, x
+
i )

\top \Lambda ++(t, xi)\theta +(t, x
+
i )

+ e\alpha i(xi - xi - 1)[2\theta +(t, x
+
i )

\top fi+(t)
\top \omega (t) + \omega (t)\top fi+(t)\Lambda ++(t, xi)

 - 1fi+(t)
\top \omega (t)]

 - (e\beta i+1(xi+1 - xi)  - 1)\theta  - (t, x
 - 
i )

\top \Lambda  -  - (t, xi)\theta  - (t, x
 - 
i )

+ e\beta i+1(xi+1 - xi)[2\theta  - (t, x
 - 
i )

\top fi - (t)
\top \omega (t) - \omega (t)\top fi - (t)\Lambda  -  - (t, xi)

 - 1fi - (t)
\top \omega (t)]\} 
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+ \theta +(t,0)
\top \Lambda ++(t,0)(e

\beta 1x1Q(t)\Lambda  -  - (t,0)
 - 1Q(t)\top +\Lambda ++(t,0)

 - 1)\Lambda ++(t,0)\theta +(t,0)

+ 2e\beta 1x1\theta +(t,0)
\top \Lambda ++(t,0)Q(t)\Lambda  -  - (t,0)

 - 1(f0+(t)Q(t) + f0 - (t))
\top \omega (t)

+ e\beta 1x1\omega (t)\top (f0+(t)Q(t) + f0 - (t))\Lambda  -  - (t,0)
 - 1(f0+(t)Q(t) + f0 - (t))

\top \omega (t)

 - e\alpha l(1 - xl - 1)\omega (t)\top fl+(t)\Lambda ++(t,1)
 - 1fl+(t)

\top \omega (t) - \theta  - (t,1)
\top \Lambda  -  - (t,1)\theta  - (t,1).

Multiply (4.25) by  - e - Lt and integrate over (0, T ), and add

\beta 0

\int T

0

\| fl - (t)\top \omega (t) - \Lambda  -  - (t,1)\theta  - (t,1)\| 2dt

to both sides of (4.25) with positive coefficient \beta 0 to be chosen later. Recall x0 = 0
and xl = 1. It follows from (4.17f) that

V (0) + \beta 0

\int T

0

\| fl - (t)\top \omega (t) - \Lambda  -  - (t,1)\theta  - (t,1)\| 2dt=R1 +R2,(4.26)

where

R1 =

\int T

0

e - Lt
l\sum 

i=1

\int xi

xi - 1

[2(e\alpha i(x - xi - 1)c+(t, x)\theta +(t, x) + e\beta i(xi - x)c - (t, x)\theta  - (t, x))
\top \omega (t)

+ e\alpha i(x - xi - 1)\theta +(t, x)
\top (LIdp  - \alpha i\Lambda ++(t, x) + \partial x\Lambda ++(t, x) + 2A++(t, x)

\top )\theta +(t, x)

+ e\beta i(xi - x)\theta  - (t, x)
\top (LIdm + \beta i\Lambda  -  - (t, x) + \partial x\Lambda  -  - (t, x) + 2A -  - (t, x)

\top )\theta  - (t, x)

+ 2\theta +(t, x)
\top (e\alpha i(x - xi - 1)A - +(t, x)

\top + e\beta i(xi - x)A+ - (t, x))\theta  - (t, x)]dxdt,

(4.27)

and

R2 =

\int T

0

e - Lt\Theta (t)\top \scrP (t)\Theta (t)dt,(4.28)

with

\Theta (t) =

\left(  \Theta  - (t)
\Theta +(t)
\omega (t)

\right)  , \scrP (t) =

\left(  \scrP  - (t) 0 \scrF  - (t)
0 \scrP +(t) \scrF +(t)

\scrF  - (t)
\top \scrF +(t)

\top P\omega (t)

\right)  ,

\Theta  - (t) = (\theta  - (t, x
 - 
1 )

\top , . . . , \theta  - (t, x
 - 
l )

\top )\top , \Theta +(t) = (\theta +(t, x
+
0 )

\top , . . . , \theta +(t, x
+
l - 1)

\top )\top ,

\scrP  - (t) = diag(P1 - (t), . . . , Pl - (t)), \scrP +(t) = diag(P0+(t), . . . , P(l - 1)+(t)),

\scrF  - (t) = (F1 - (t)
\top , . . . , Fl - (t)

\top )\top , \scrF +(t) = (F0+(t)
\top , . . . ,F(l - 1)+(t)

\top )\top ,

Pi+(t) = (e\alpha i(xi - xi - 1)  - 1)\Lambda ++(t, xi), Pi - (t) = - (e\beta i+1(xi+1 - xi)  - 1)\Lambda  -  - (t, xi),

Fi+(t) = e\alpha i(xi - xi - 1)fi+(t)
\top , Fi - (t) = e\beta i+1(xi+1 - xi)fi - (t)

\top , i= 1, . . . , l - 1,

P0+(t) = - \Lambda ++(t,0)(e
\beta 1x1Q(t)\Lambda  -  - (t,0)

 - 1Q(t)\top +\Lambda ++(t,0)
 - 1)\Lambda ++(t,0),

F0+(t) = - e\beta 1x1\Lambda ++(t,0)Q(t)\Lambda  -  - (t,0)
 - 1(f0+(t)Q(t) + f0 - (t))

\top ,

Pl - (t) = \beta 0\Lambda  -  - (t,1)
2 +\Lambda  -  - (t,1), Fl - (t) = - \beta 0\Lambda  -  - (t,1)fl - (t)

\top ,

P\omega (t) = \beta 0fl - (t)fl - (t)
\top +

l - 1\sum 
i=1

\Bigl[ 
e\alpha i(xi - xi - 1)fi+(t)\Lambda ++(t, xi)

 - 1fi+(t)
\top 

 - e\beta i+1(xi+1 - xi)fi - (t)\Lambda  -  - (t, xi)
 - 1fi - (t)

\top 
\Bigr] 

+ e\alpha l(1 - xl - 1)fl+(t)\Lambda ++(t,1)
 - 1fl+(t)

\top 

 - e\beta 1x1(f0+(t)Q(t) + f0 - (t))\Lambda  -  - (t,0)
 - 1(f0+(t)Q(t) + f0 - (t))

\top .
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REGULATION FOR TIME-VARYING BALANCE LAWS 2443

Considering the left-hand side of (4.26), we have

V (0) + \beta 0

\int T

0

\| fl - (t)\top \omega (t) - \Lambda  -  - (t,1)\theta  - (t,1)\| 2dt

\leq \~M

\Biggl( \int 1

0

\| \theta (0, x)\| 2dx+

\int T

0

\| fl - (t)\top \omega (t) - \Lambda  -  - (t,1)\theta  - (t,1)\| 2dt

\Biggr) 
,

(4.29)

where

\~M =max

\biggl\{ 
\beta 0, max

i=1,...,l

\bigl\{ 
e\alpha i , e\beta i

\bigr\} \biggr\} 
.(4.30)

Now we deal with the right-hand side of (4.26). Our aim is to choose suitable constants

L, \beta 0, \alpha i, \beta i, i = 1, . . . , l, such that R1 + R2 \geq 
\int T

0
\varepsilon e - Lt\| \omega (t)\| 2dt for some positive

constant \varepsilon . Let us first deal with R2. For any \varepsilon \ast > 0, let \beta 0, \alpha i, \beta i, i = 1, . . . , l, be
large enough such that

\beta 0\varepsilon 0 > 1, e\beta 1x1\varepsilon 0\varepsilon Q >M0, \alpha i > 0, \beta i+1 > 0, i= 1, . . . , l - 1,

e\alpha l(1 - xl - 1)
\varepsilon f
M0

\geq \varepsilon \ast +
M2

f

\varepsilon 0

l - 1\sum 
i=0

\biggl( 
e\alpha i(xi - xi - 1)

e\alpha i(xi - xi - 1)  - 1
+

e\beta i+1(xi+1 - xi)

e\beta i+1(xi+1 - xi)  - 1

\biggr) 

+
\beta 0M

2
f

\beta 0\varepsilon 0  - 1
+ 2e\beta 1x1M2

f (1 +mpM2
Q)

e\beta 1x1mpM0M
2
Q\varepsilon 

 - 1
0  - e\beta 1x1\varepsilon Q +M0\varepsilon 

 - 1
0

e\beta 1x1\varepsilon 0\varepsilon Q  - M0
,

where \varepsilon 0 is defined as in Assumption 2.2, \varepsilon Q is defined as in (4.3), \varepsilon f is defined
as in (4.4), M0 and MQ are defined as in Assumption 2.3, and Mf is defined as in
Assumption 2.4. Direct calculation shows that for all t in [0, T ],

Pi+(t)> 0, i= 0, . . . , l - 1, Pi - (t)> 0, i= 1, . . . , l,

P\omega (t)\geq \varepsilon \ast Idq +

l - 1\sum 
i=0

Fi+(t)
\top Pi+(t)

 - 1Fi+(t) +

l\sum 
i=1

Fi - (t)
\top Pi - (t)

 - 1Fi - (t).
(4.31)

Note that (4.3) and (4.4) are necessary for P0+ and P\omega to be positive definite, respec-
tively. It follows from (4.31) and the Schur complement lemma (see [8, Appendix 5.5])

that for all t in [0, T ], \Theta (t)\top \scrP (t)\Theta (t)\geq \varepsilon \ast \| \omega (t)\| 2, and thus R2 \geq 
\int T

0
\varepsilon \ast e - Lt\| \omega (t)\| 2dt.

Now let us estimate R1. For L large enough, we have

R1 \geq 
\int T

0

e - Lt
l\sum 

i=1

\int xi

xi - 1

[e\alpha i(x - xi - 1)(L - (\alpha i + 1)M0  - 2pM1)\| \theta +(t, x)\| 2

+ e\beta i(xi - x)(L - (\beta i + 1)M0  - 2mM1)\| \theta  - (t, x)\| 2

 - (e\alpha i(x - xi - 1) + e\beta i(xi - x))M1(m\| \theta +(t, x)\| 2 + p\| \theta  - (t, x)\| 2)
+ 2(e\alpha i(x - xi - 1)c+(t, x)\theta +(t, x) + e\beta i(xi - x)c - (t, x)\theta  - (t, x))

\top \omega (t)]dxdt

\geq 
\int T

0

e - Lt
l\sum 

i=1

\int xi

xi - 1

[(L - ( \~M + 1)M0
\~M  - 2nM1

\~M)(\| \theta +(t, x)\| 2 + \| \theta  - (t, x)\| 2)

+ 2(e\alpha i(x - xi - 1)c+(t, x)\theta +(t, x) + e\beta i(xi - x)c - (t, x)\theta  - (t, x))
\top \omega (t)]dxdt,

where M1 is defined as in Assumption 2.3. Notice that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int xi

xi - 1

c\pm (t, x)\theta \pm (t, x)dx

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq qnM2
c

\int xi

xi - 1

\| \theta \pm (t, x)\| 2dx,
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2444 YUBO BAI, CHRISTOPHE PRIEUR, AND ZHIQIANG WANG

where Mc is defined as in Assumption 2.4. It follows that

R1 \geq 
\int T

0

e - Lt
l\sum 

i=1

\left[  L - ( \~M + 1)M0
\~M  - 2nM1

\~M

qnM2
c

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int xi

xi - 1

c+(t, x)\theta +(t, x)dx

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

+
L - ( \~M + 1)M0

\~M  - 2nM1
\~M

qnM2
c

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int xi

xi - 1

c - (t, x)\theta  - (t, x)dx

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

 - 2 \~M\| \omega (t)\| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int xi

xi - 1

c+(t, x)\theta +(t, x)dx

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\|  - 2 \~M\| \omega (t)\| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int xi

xi - 1

c - (t, x)\theta  - (t, x)dx

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggr] 
dt,

provided that L> ( \~M + 1)M0
\~M + 2nM1

\~M . Therefore, we conclude that

R1 +R2 \geq 
\int T

0

e - Lt

\Biggl\{ 
\varepsilon \ast 

2
\| \omega (t)\| 2

+

l\sum 
i=1

\left[  L - ( \~M + 1)M0
\~M  - 2nM1

\~M

qnM2
c

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int xi

xi - 1

c+(t, x)\theta +(t, x)dx

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

 - 2 \~M\| \omega (t)\| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int xi

xi - 1

c+(t, x)\theta +(t, x)dx

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| + \varepsilon \ast 

4l
\| \omega (t)\| 2

+
L - ( \~M + 1)M0

\~M  - 2nM1
\~M

qnM2
c

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int xi

xi - 1

c - (t, x)\theta  - (t, x)dx

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

 - 2 \~M\| \omega (t)\| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int xi

xi - 1

c - (t, x)\theta  - (t, x)dx

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| + \varepsilon \ast 

4l
\| \omega (t)\| 2

\Biggr] \Biggr\} 
dt,

provided that L> ( \~M + 1)M0
\~M + 2nM1

\~M . Then we choose that

L\geq 4lqnM2
c
\~M2

\varepsilon \ast 
+ ( \~M + 1)M0

\~M + 2nM1
\~M.(4.32)

Consequently, we obtain that

R1 +R2 \geq 
\int T

0

\varepsilon \ast 

2
e - Lt\| \omega (t)\| 2dt\geq \varepsilon \ast 

2
e - LT

\int T

0

\| \omega (t)\| 2dt.(4.33)

Together with Claim B.3, this concludes the proof of Lemma 4.10 with cT =
\varepsilon \ast 

2 \~M
e - LT .

Appendix A. Broad solutions. We consider the following hyperbolic system,
which includes all the systems of this paper. For (t, x) in \scrD l(t0),

\partial tw(t, x) + \Lambda (t, x)\partial xw(t, x) =A(t, x)w(t, x) + J(t, x),(A.1a)

w+(t, x
+
i ) =w+(t, x

 - 
i ) + \sigma i+(t), i= 1, . . . , l - 1,(A.1b)

w+(t,0) =Q(t)w - (t,0) + \sigma 0+(t),(A.1c)

w - (t, x
 - 
i ) =w - (t, x

+
i ) + \sigma i - (t), i= 1, . . . , l - 1,(A.1d)

w - (t,1) =

\int 1

0

L(t, \xi )w(t, \xi )d\xi + \sigma l - (t),(A.1e)

w(t0, x) =w0(x),(A.1f)
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REGULATION FOR TIME-VARYING BALANCE LAWS 2445

where w(t, x) in \BbbR n is the state, and w0 in L2(0,1)n is the initial data. Functions J
in L2(\scrD (0))n, \sigma  - := (\sigma 1 - , . . . , \sigma l - ) in L2(0, T )m\times l, and \sigma + := (\sigma 0+, . . . , \sigma (l - 1)+) in
L2(0, T )p\times l are the nonhomogeneous terms. For the coefficients involved in system
(A.1), let us make the following assumptions.

Assumption A.1. Assume that \Lambda , A, and Q satisfy Assumptions 2.1 to 2.3 and
that L is in L\infty (\scrD (0))m\times n satisfying \| L\| L\infty (\scrD (0))m\times n \leq M1 for M1 defined as in
Assumption 2.3.

Notice that L is defined over time interval (0, T ). The reason lies in the regularity
of the feedback gain functions in this paper.

A.1. Definition of broad solution. Let us now introduce the definition of
broad solution or so-called solution along the characteristics. This definition is similar
to the definition of broad solution in [12]. Recalling the notation in section 3, we
introduce \=sinj (t0; t, x) =max\{ t0, sinj (t, x)\} for j = 1, . . . , n, and

i(x) = i, if x\in (xi - 1, xi), i= 1, . . . , l.

Similar to the methods used in [12], integrating the jth equation in (A.1a) along
the characteristic \chi j(s; t, x) and applying appropriate boundary, jump, or initial con-
ditions, we obtain the following system of integral equation. For (t, x) in \scrD l(t0),

wj(t, x) = Ij(w)(t, x) +

\int t

\=s\mathrm{i}\mathrm{n}j (t0;t,x)

n\sum 
k=1

ajk(s,\chi j(s; t, x))wk(s,\chi j(s; t, x))ds

+

\int t

\=s\mathrm{i}\mathrm{n}j (t0;t,x)

Jj(s,\chi j(s; t, x))ds,

(A.2)

where for j = 1, . . . ,m,

Ij(w)(t, x)

=

\left\{             

\int 1

0

Lj,:(s
in
j (t, x), \xi )w(sinj (t, x), \xi )d\xi +

l\sum 
k=i(x)

\sigma k - 
j (sinj , k(t, x)), if sinj (t, x)> t0,

w0
j (\chi j(t0; t, x)) +

i(\chi j(t0;t,x)) - 1\sum 
k=i(x)

\sigma k - 
j - m(sin,kj (t, x)), if sinj (t, x)< t0,

(A.3)

and for j =m+ 1, . . . , n,

Ij(w)(t, x)

=

\left\{             
Qj - m,:(s

in
j (t, x))w - (s

in
j (t, x),0) +

i(x)\sum 
k=1

\sigma 
(k - 1)+
j - m (sinj , k(t, x)), if sinj (t, x)> t0,

w0
j (\chi j(t0; t, x)) +

i(x)\sum 
k=1+i(\chi j(t0;t,x))

\sigma 
(k - 1)+
j - m (sin,kj (t, x)), if sinj (t, x)< t0.

(A.4)

This leads to the following definition of the broad solution to system (A.1) over (t, x)
in \scrD l(t0).
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2446 YUBO BAI, CHRISTOPHE PRIEUR, AND ZHIQIANG WANG

Definition A.2. Let T > 0, 0 \leq t0 < T , w0 in L2(0,1)n, J in L2(\scrD (0))n, \sigma  - 

in L2(0, T )m\times l, and \sigma + in L2(0, T )p\times l be fixed. We say that w is the broad solution
to system (A.1) over \scrD l(t0) if w is in \scrB l(t0)

n and if the integral equation (A.2) is
satisfied for j = 1, . . . , n, for a.e. t0 < t< T and a.e. x in (0,1).

A.2. Well-posedness. In this section, the well-posedness result is provided.

Theorem A.3. Let T > 0. Under Assumption A.1, for every 0 \leq t0 < T , w0

in L2(0,1)n, J in L2(\scrD (0))n, \sigma  - in L2(0, T )m\times l, and \sigma + in L2(0, T )p\times l, there exists
a unique broad solution w in \scrB l(t0)

n to (A.1) over \scrD l(t0). Moreover, there exists
C = C(T ) > 0 such that, for every 0 \leq t0 < T , w0 in L2(0,1)n, J in L2(\scrD (0))n, \sigma  - 

in L2(0, T )m\times l, and \sigma + in L2(0, T )p\times l, the broad solution w satisfies

\| w\| L\infty ((t0,T );L2(0,1)n) + \| w\| L\infty ((0,1);L2(t0,T )n)

\leq C(\| w0\| L2(0,1)n + \| J\| L2(\scrD (0))n + \| \sigma  - \| L2(0,T )m\times l + \| \sigma +\| L2(0,T )p\times l).
(A.5)

The proof is based on the proof of Theorem A.2 of [12]. We provide only a sketch of
the proof here, highlighting the differences from the proof of Theorem A.2 presented
in [12].

Sketch of the proof of Theorem A.3. The basic idea is the following fixed point
method. A function w : \scrD (t0) \rightarrow \BbbR n satisfies the integral equations (A.2) for a.e.
t0 < t< T and a.e. x in (0,1) if and only if it is a fixed point of the map \scrA :\scrB l(t0)

n \rightarrow 
\scrB l(t0)

n and (\scrA (w))j(t, x) is given by the expression on the right-hand side of (A.2).
Let us now make \scrB l(t0)

n a Banach space by equipping it with the weighted norm
\| w\| \scrB l(t0)n = \| w\| \scrB 1

+ \| w\| \scrB 2
, where

\| w\| \scrB 1
= max

t\in [t0,T ]
e - 

L1
2 (t - t0)

\sqrt{}    \int 1

0

n\sum 
j=1

| wj(t, x)| 2e - L2xdx,

\| w\| \scrB 2
= max

x\in [0,1]
e

L2
2 (1 - x)

\sqrt{}    \int T

t0

n\sum 
j=1

| wj(t, x)| 2e - L1(t - t0)dt,

where L1,L2 > 0 are constants independent of T , t0, w0, \sigma , and J that will be fixed
below. The similar weight norms are also used in [13, 15]. Our goal is to show that,
for L1,L2 > 0 large enough,

\| \scrA (w1) - \scrA (w2)\| \scrB l(t0)n \leq 1

2
\| w1  - w2\| \scrB l(t0)n \forall w1,w2 \in \scrB l(t0)

n.(A.6)

Actually, the proof of (A.6) is the same as in [12]. Indeed, we introduce w :=w1 - w2,
so that \scrA (w1) - \scrA (w2) is equal to the right-hand side of (A.2) with w0 = 0, J = 0,
\sigma + = 0, and \sigma  - = 0. This is a special case in [12]. Therefore, (A.6) is established by
following the proof in [12]. The remaining task is to verify that the estimate (A.5)
holds. Indeed, using (A.6) we obtain that the fixed point w of \scrA satisfies

1

2
\| w\| \scrB l(t0)n \leq \| \scrA (0)\| \scrB l(t0)n ,(A.7)

and straightforward computations show that

\| w\| 2L\infty ((t0,T );L2(0,1)n) \leq eL2eL1h\| w\| 2\scrB 1
, \| w\| 2L\infty ((0,1);L2(t0,T )n) \leq eL1h\| w\| 2\scrB 2

.(A.8)
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REGULATION FOR TIME-VARYING BALANCE LAWS 2447

Then the fixed point of \scrA satisfies the estimate (A.5) if the right-hand side of (A.5)
is the upper bound of \| \scrA (0)\| \scrB l(t0)n . By using changes of coordinate, (3.3), and (3.8),
we obtain the following estimates:\int 1

0

n\sum 
j=1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int t

\=s\mathrm{i}\mathrm{n}j (t0;t,x)

Jj(s,\chi j(s; t, x))ds

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

e - L2xdx\leq eM0T

\varepsilon 0
\| J\| 2L2(\scrD (0))n ,(A.9)

\int T

t0

n\sum 
j=1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int t

\=s\mathrm{i}\mathrm{n}j (t0;t,x)

Jj(s,\chi j(s; t, x))ds

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

e - L1(t - t0)dt\leq eM0T

\varepsilon 20
\| J\| 2L2(\scrD (0))n ,(A.10)

\int 1

0

n\sum 
j=1

| Ij(0)(t, x)| 2e - L2xdx(A.11)

\leq 2eM0T (M0\| \sigma  - \| 2L2(0,T )m\times l +M0\| \sigma +\| 2L2(0,T )p\times l + \| w0\| 2L2(0,1)n),\int T

t0

n\sum 
j=1

| Ij(0)(t, x)| 2e - L1(t - t0)dt(A.12)

\leq 2
eM0T

\varepsilon 0
(M0\| \sigma  - \| 2L2(0,T )m\times l +M0\| \sigma +\| 2L2(0,T )p\times l + \| w0\| 2L2(0,1)n),

where \varepsilon 0 is defined as in Assumption 2.2. It follows from (A.9) and (A.11) that

\| \scrA (0)\| 2\scrB 1
\leq 2eM0T

\biggl( 
2\| w0\| 2L2(0,1)n +

1

\varepsilon 0
\| J\| 2L2(\scrD (0))n(A.13)

+ 2M0\| \sigma  - \| 2L2(0,T )m\times l + 2M0\| \sigma +\| 2L2(0,T )p\times l

\biggr) 
.

Similarly, from (A.10) and (A.12) we obtain that

\| \scrA (0)\| 2\scrB 2
\leq 2

eM0T+L2

\varepsilon 0

\biggl( 
2\| w0\| 2L2(0,1)n +

1

\varepsilon 0
\| J\| 2L2(\scrD (0))n(A.14)

+ 2M0\| \sigma  - \| 2L2(0,T )m\times l + 2M0\| \sigma +\| 2L2(0,T )p\times l

\biggr) 
.

Then the estimate (A.5) for the fixed point of \scrA follows from (A.7), (A.8), (A.13),
and (A.14).

Appendix B. \bfitC 1 solutions. In this section, we show that the broad solution
is also a C1 solution if the data of the system are smooth enough. Moreover, the
continuous dependence of the broad solutions on the system data is given. In the
proofs of Lemmas 4.9 and 4.10, a C1 solution is needed. Let us make the following
assumptions for the coefficients involved in system (A.1).

Assumption B.1. Assume that \Lambda , A, Q, and L satisfy Assumption A.1, and that
\Lambda , A, Q, and L are in C2(\scrD (0))n\times n, C1(\scrD (0))n\times n, C1([0, T ])p\times m, and C1(\scrD (0))m\times n,
respectively.

The C1 solution is given by the following theorem.

Theorem B.2. Let T > 0. Under Assumption B.1, for every 0 \leq t0 < T , w0 in
C1

U (\cup l
i=1(xi - 1, xi))

n, J in C1
U (\scrD l(0))

n, \sigma  - in C1([0, T ])m\times l, and \sigma + in C1([0, T ])p\times l

satisfying the compatibility conditions
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2448 YUBO BAI, CHRISTOPHE PRIEUR, AND ZHIQIANG WANG

\sigma i\pm (t0) =w0
\pm (x

\pm 
i ) - w0

\pm (x
\mp 
i ), i= 1, . . . , l - 1,

\sigma 0+(t0) =w0
+(0) - Q(t0)w

0
 - (0), \sigma l - (t0) =w0

 - (1) - 
\int 1

0

L(t0, \xi )w
0(\xi )d\xi ,

(\sigma i\pm )\prime (t0) = - \Lambda \pm \pm (t0, xi)((w
0
\pm )

\prime (x\pm 
i ) - (w0

\pm )
\prime (x\mp 

i )) +A\pm \pm (t0, xi)\sigma 
i\pm (t0)

 - A\pm \mp (t0, xi)\sigma 
i\mp (t0) + J\pm (t0, x

\pm 
i ) - J\pm (t0, x

\mp 
i ), i= 1, . . . , l - 1,

(\sigma 0+)\prime (t0) = J+(t0,0) - Q(t0)J - (t0,0) - \Lambda ++(t0,0)(w
0
+)

\prime (0)

+Q(t0)\Lambda  -  - (t0,0)(w
0
 - )

\prime (0) + (A++(t0,0) - Q(t0)A - +(t0,0))w
0
+(0)

+ (A+ - (t0,0) - Q\prime (t0) - Q(t0)A -  - (t0,0))w
0
 - (0),

(\sigma l - )\prime (t0) = - \Lambda  -  - (t0,1)(w
0
 - )

\prime (1) +A - +(t0,1)w
0
+(1) +A -  - (t0,1)w

0
 - (1) + J - (t0,1)

 - 
\int 1

0

[L(t0, \xi )( - \Lambda (t0, \xi )(w
0)\prime (\xi ) +A(t0, \xi )w

0(\xi )

+ J(t0, \xi )) + \partial tL(t0, \xi )w
0(\xi )]d\xi ,

(B.1)

there exists a unique solution w in C1
U (\scrD l(t0))

n to (A.1).

The proof follows the method in [13, Lemma 3.2] and [14, Lemma 2.1]. Here, we only
provide a sketch of the proof, explaining how we apply the method from [13, Lemma
3.2] and [14, Lemma 2.1].

Sketch of the proof of Theorem B.2. Set, for u in C0
U (\scrD l(t0))

n,

\| u\| 0 := max
1\leq i\leq n

max
(t,x)\in \scrD l(t0)

| e - L1t - L2xui(t, x)| ,

and for u in C1
U (\scrD l(t0))

n,

\| u\| 1 :=max\{ \| u\| 0,\| \partial tu\| 0,\| \partial xu\| 0\} ,

where L1 and L2 are two large, positive constants determined later. Set

\scrO := \{ v \in C1
U (\scrD l(t0))

n| v(t0, \cdot ) =w0, \partial tv(t0, \cdot ) = - \Lambda (t0, \cdot )(w0)\prime +A(t0, \cdot )w0 + J(t0, \cdot )\} .

For v in \scrO , let w=\scrA 1(v) be defined as follows: for j = 1, . . . ,m,

wj(t, x) = Ij(v)(t, x) +

\int t

\=s\mathrm{i}\mathrm{n}j (t0;t,x)

n\sum 
k=1

ajk(s,\chi j(s; t, x))vk(s,\chi j(s; t, x))ds(B.2)

+

\int t

\=s\mathrm{i}\mathrm{n}j (t0;t,x)

Jj(s,\chi j(s; t, x))ds,

where Ij(v)(t, x) is defined as in (A.3), and for j =m+ 1, . . . , n,

wj(t, x) = Ij(w)(t, x) +

\int t

\=s\mathrm{i}\mathrm{n}j (t0;t,x)

n\sum 
k=1

ajk(s,\chi j(s; t, x))vk(s,\chi j(s; t, x))ds(B.3)

+

\int t

\=s\mathrm{i}\mathrm{n}j (t0;t,x)

Jj(s,\chi j(s; t, x))ds,

where Ij(w)(t, x) is defined as in (A.4). Notice that for j =m+1, . . . , n, Ij(w)(t, x) is
only involved with w - , which is defined by (B.2). It follows from Assumption B.1 and
the compatibility conditions (B.1) that \scrA 1(\scrO )\subset \scrO . Direct calculation shows that the
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fixed point of \scrA 1 is the C1 solution to (A.1). Our aim is to show that, for L1 and L2

large enough,

\| \scrA 1(v
1) - \scrA 1(v

2)\| 1 \leq 
1

2
\| v1  - v2\| 1 \forall v1, v2 \in \scrO .(B.4)

We can directly use the method from [13, Lemma 3.2] and [14, Lemma 2.1] to prove
(B.4), since (A.1) is linear. Indeed, we introduce v := v1  - v2, so that w :=\scrA 1(v

1) - 
\scrA 1(v

2) is equal to the right-hand sides of (B.2) and (B.3) with w0 = 0, J = 0, \sigma + = 0,
and \sigma  - = 0. This is a special case in [14, Lemma 2.1]. Therefore, (B.4) is established
by following the proof in [14, Lemma 2.1].

As for the continuous dependence of the broad solutions on the system data, one
can prove the following claim by using the same method as in [9, Theorem 3.5].

Claim B.3. For \Lambda , A, Q, and L satisfying Assumption A.1, and w0 in L2(0,1)n,
J in L2(\scrD (0))n, \sigma  - in L2(0, T )m\times l, and \sigma + in L2(0, T )p\times l, let w in \scrB l(t0)

n be the
broad solution to system (A.1) over \scrD l(t0). For k \geq 1, \Lambda k, Ak, Qk, and Lk satis-
fying Assumption B.1, and w0,k in C1

U (\cup l
i=1(xi - 1, xi))

n, Jk in C1
U (\scrD l(0))

n, \sigma  - ,k in
C1([0, T ])m\times l, and \sigma +,k in C1([0, T ])p\times l satisfying the compatibility conditions (B.1),
let wk in C1

U (\scrD l(t0))
n be the C1 solution to system (A.1). Assume that

(\Lambda k,Ak,Qk,Lk,w0,k, Jk, \sigma  - ,k, \sigma +,k)\rightarrow (\Lambda ,A,Q,L,w0, J, \sigma  - , \sigma +) in

C1(\scrD (0))n\times n \times C0(\scrD (0))n\times n \times C0([0, T ])p\times m \times L\infty (\scrD (0))m\times n

\times L2(0,1)n \times L2(\scrD (0))n \times L2(0, T )m\times l \times L2(0, T )p\times l as k\rightarrow \infty .

Then we have wk \rightarrow w in \scrB l(t0)
n as k\rightarrow \infty .
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